Positive solutions for mixed problems of singular fractional differential equations

被引:76
作者
Agarwal, Ravi P. [1 ]
O'Regan, Donal [2 ]
Stanek, Svatoslav [3 ]
机构
[1] Texas A&M Univ, Dept Math, Kingsville, TX 78363 USA
[2] Natl Univ Ireland, Dept Math, Galway, Ireland
[3] Palacky Univ, Dept Math Anal, Fac Sci, Olomouc 77146, Czech Republic
关键词
Fractional differential equation; Caputo fractional derivative; singular mixed problem; positive solution; regularization; fixed point theorem on cones; MSC (2010) 26A33; 34B16; BOUNDARY-VALUE PROBLEM;
D O I
10.1002/mana.201000043
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the existence of positive solutions to the singular fractional boundary value problem: D-c(a) u + f(t, u, u', D-c(mu) u) = 0, u'(0) = 0, u(1) = 0, where 1 < alpha < 2, 0 < mu < 1, f is a L-q-Caratheodory function, q > 1/a 1, and f( t, x, y, z) may be singular at the value 0 of its space variables x, y, z. Here D-c stands for the Caputo fractional derivative. The results are based on combining regularization and sequential techniques with a fixed point theorem on cones. (C) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:27 / 41
页数:15
相关论文
共 13 条
[1]   Positive solutions for Dirichlet problems, of singular nonlinear fractional differential equations [J].
Agarwal, Ravi P. ;
O'Regan, Donal ;
Stanek, Svatoslav .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 371 (01) :57-68
[2]   Opial type inequalities involving Riemann-Liouville fractional derivatives of two functions with applications [J].
Anastassiou, George A. .
MATHEMATICAL AND COMPUTER MODELLING, 2008, 48 (3-4) :344-374
[3]  
[Anonymous], 2002, Appl. Anal. Vol.I
[4]  
[Anonymous], 2006, THEORY APPL FRACTION
[5]  
[Anonymous], 1988, NOTES REPORTS MATH S
[6]  
ARORA AK, 1987, INDIAN J PURE AP MAT, V18, P931
[7]  
Kilbas A., 2001, Applicable Anal, V78, P153, DOI DOI 10.1080/00036810108840931
[9]  
Krasnoselskii MA., 1964, POSITIVE SOLUTIONS O
[10]  
Podlubny I., 1999, FRACTIONAL DIFFERENT