Artificial Intelligence as a Tool to Study the 3D Skeletal Architecture in Newly Settled Coral Recruits: Insights into the Effects of Ocean Acidification on Coral Biomineralization

被引:5
作者
Scucchia, Federica [1 ,2 ]
Sauer, Katrein [3 ]
Zaslansky, Paul [3 ]
Mass, Tali [1 ,4 ]
机构
[1] Univ Haifa, Leon H Charney Sch Marine Sci, Dept Marine Biol, IL-3498838 Haifa, Israel
[2] Interuniv Inst Marine Sci, IL-88103 Elat, Israel
[3] Charite, Dept Operat & Prevent Dent, D-14497 Berlin, Germany
[4] Morris Kahn Marine Res Stn, IL-30889 Haifa, Israel
基金
欧洲研究理事会;
关键词
coral reefs; coral recruits; biomineralization; skeletal structure; synchrotron phase contrast-enhanced microCT; PCE-CT; artificial intelligence; ocean acidification; BROODING CORAL; NEURAL-NETWORK; CARBONIC-ACID; IMAGE; SEGMENTATION; TOMOGRAPHY; RESOLUTION; GROWTH; PHASE; MICROSTRUCTURE;
D O I
10.3390/jmse10030391
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Understanding the formation of the coral skeleton has been a common subject uniting various marine and materials study fields. Two main regions dominate coral skeleton growth: Rapid Accretion Deposits (RADs) and Thickening Deposits (TDs). These have been extensively characterized at the 2D level, but their 3D characteristics are still poorly described. Here, we present an innovative approach to combine synchrotron phase contrast-enhanced microCT (PCE-CT) with artificial intelligence (AI) to explore the 3D architecture of RADs and TDs within the coral skeleton. As a reference study system, we used recruits of the stony coral Stylophora pistillata from the Red Sea, grown under both natural and simulated ocean acidification conditions. We thus studied the recruit's skeleton under both regular and morphologically-altered acidic conditions. By imaging the corals with PCE-CT, we revealed the interwoven morphologies of RADs and TDs. Deep-learning neural networks were invoked to explore AI segmentation of these regions, to overcome limitations of common segmentation techniques. This analysis yielded highly-detailed 3D information about the RAD's and TD's architecture. Our results demonstrate how AI can be used as a powerful tool to obtain 3D data essential for studying coral biomineralization and for exploring the effects of environmental change on coral growth.
引用
收藏
页数:19
相关论文
共 64 条
[1]   Deep learning discrimination of quartz and resin in optical microscopy images of minerals [J].
Alvarez Iglesias, Julio Cesar ;
Magalhaes Santos, Richard Bryan ;
Paciornik, Sidnei .
MINERALS ENGINEERING, 2019, 138 :79-85
[2]  
Baruchel J, 2000, X-ray tomography in material science
[3]   Study of the crystallographic architecture of corals at the nanoscale by scanning transmission X-ray microscopy and transmission electron microscopy [J].
Benzerara, Karim ;
Menguy, Nicolas ;
Obst, Martin ;
Stolarski, Jaroslaw ;
Mazur, Maciej ;
Tylisczak, Tolek ;
Brown, Gordon E., Jr. ;
Meibom, Anders .
ULTRAMICROSCOPY, 2011, 111 (08) :1268-1275
[4]   Pulsed 86Sr-labeling and NanoSIMS imaging to study coral biomineralization at ultra-structural length scales [J].
Brahmi, C. ;
Domart-Coulon, I. ;
Rougee, L. ;
Pyle, D. G. ;
Stolarski, J. ;
Mahoney, J. J. ;
Richmond, R. H. ;
Ostrander, G. K. ;
Meibom, A. .
CORAL REEFS, 2012, 31 (03) :741-752
[5]   Skeletal growth, ultrastructure and composition of the azooxanthellate scleractinian coral Balanophyllia regia [J].
Brahmi, C. ;
Meibom, A. ;
Smith, D. C. ;
Stolarski, J. ;
Auzoux-Bordenave, S. ;
Nouet, J. ;
Doumenc, D. ;
Djediat, C. ;
Domart-Coulon, I. .
CORAL REEFS, 2010, 29 (01) :175-189
[6]  
Buyya Rajkumar., 2016, BIG DATA PRINCIPLES
[7]   Machine learning hyperparameter selection for Contrast Limited Adaptive Histogram Equalization [J].
Centini Campos, Gabriel Fillipe ;
Mastelini, Saulo Martiello ;
Aguiar, Gabriel Jonas ;
Mantovani, Rafael Gomes ;
de Melo, Leonimer Flavio ;
Barbon, Sylvio, Jr. .
EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING, 2019, 2019 (1)
[8]   Phase segmentation of X-ray computer tomography rock images using machine learning techniques: an accuracy and performance study [J].
Chauhan, Swarup ;
Ruehaak, Wolfram ;
Anbergen, Hauke ;
Kabdenov, Alen ;
Freise, Marcus ;
Wille, Thorsten ;
Sass, Ingo .
SOLID EARTH, 2016, 7 (04) :1125-1139
[9]   Processing of rock core microtomography images: Using seven different machine learning algorithms [J].
Chauhan, Swarup ;
Ruehaak, Wolfram ;
Khan, Faisal ;
Enzmann, Frieder ;
Mielke, Philipp ;
Kersten, Michael ;
Sass, Ingo .
COMPUTERS & GEOSCIENCES, 2016, 86 :120-128
[10]   Deep Learning Shape Priors for Object Segmentation [J].
Chen, Fei ;
Yu, Huimin ;
Hu, Roland ;
Zeng, Xunxun .
2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, :1870-1877