The influence of climate variables on dengue in Singapore

被引:69
作者
Pinto, Edna [1 ]
Coelho, Micheline [1 ]
Oliver, Leuda [1 ]
Massad, Eduardo [1 ,2 ]
机构
[1] Univ Sao Paulo, Dept Med, Sao Paulo, Brazil
[2] London Sch Hyg & Trop Med, Dept Infect Dis, London WC1, England
基金
巴西圣保罗研究基金会;
关键词
dengue; Poisson Regression Model; Principal Component Analysis; temperature; relative risk; POPULATION;
D O I
10.1080/09603123.2011.572279
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this work we correlated dengue cases with climatic variables for the city of Singapore. This was done through a Poisson Regression Model (PRM) that considers dengue cases as the dependent variable and the climatic variables (rainfall, maximum and minimum temperature and relative humidity) as independent variables. We also used Principal Components Analysis (PCA) to choose the variables that influence in the increase of the number of dengue cases in Singapore, where PC1 (Principal component 1) is represented by temperature and rainfall and PC2 (Principal component 2) is represented by relative humidity. We calculated the probability of occurrence of new cases of dengue and the relative risk of occurrence of dengue cases influenced by climatic variable. The months from July to September showed the highest probabilities of the occurrence of new cases of the disease throughout the year. This was based on an analysis of time series of maximum and minimum temperature. An interesting result was that for every 2-10 degrees C of variation of the maximum temperature, there was an average increase of 22.2-184.6% in the number of dengue cases. For the minimum temperature, we observed that for the same variation, there was an average increase of 26.1-230.3% in the number of the dengue cases from April to August. The precipitation and the relative humidity, after analysis of correlation, were discarded in the use of Poisson Regression Model because they did not present good correlation with the dengue cases. Additionally, the relative risk of the occurrence of the cases of the disease under the influence of the variation of temperature was from 1.2-2.8 for maximum temperature and increased from 1.3-3.3 for minimum temperature. Therefore, the variable temperature (maximum and minimum) was the best predictor for the increased number of dengue cases in Singapore.
引用
收藏
页码:415 / 426
页数:12
相关论文
共 26 条
[1]  
Andrade IS, 2004, ESTUDO INFLUENCIA EL
[2]   Modelling the control strategies against dengue in Singapore [J].
Burattini, M. N. ;
Chen, M. ;
Chow, A. ;
Coutinho, F. A. B. ;
Goh, K. T. ;
Lopez, L. F. ;
Ma, S. ;
Massad, E. .
EPIDEMIOLOGY AND INFECTION, 2008, 136 (03) :309-319
[3]   Climate and dengue epidemics in State of Rio de Janeiro [J].
Camara, Fernando Portela ;
Gomes, Adriana Fagundes ;
dos Santos, Gualberto Teixeira ;
Portela Camara, Daniel Cardoso .
REVISTA DA SOCIEDADE BRASILEIRA DE MEDICINA TROPICAL, 2009, 42 (02) :137-140
[4]  
Chen Chee Dhang, 2005, Trop Biomed, V22, P39
[5]  
Coelho-Zanotti MSS, 2007, THESIS DOUTORADO MET
[6]  
Costello A, 2009, LANCET, V373, P1693, DOI [10.1016/S0140-6736(09)60935-1, 10.1016/S0140-6736(09)60929-6]
[7]  
Donalísio Maria Rita, 2002, Rev. bras. epidemiol., V5, P259
[8]   Potential effect of population and climate changes on global distribution of dengue fever: an empirical model [J].
Hales, S ;
de Wet, N ;
Maindonald, J ;
Woodward, A .
LANCET, 2002, 360 (9336) :830-834
[9]   Dengue virus - Mosquito interactions [J].
Halstead, Scott B. .
ANNUAL REVIEW OF ENTOMOLOGY, 2008, 53 :273-291
[10]  
Husain Tahir, 2008, Int J Environ Res Public Health, V5, P204, DOI 10.3390/ijerph5040204