Compression-compression fatigue of selective electron beam melted cellular titanium (Ti-6Al-4V)

被引:146
作者
Hrabe, Nikolas W. [1 ]
Heinl, Peter [2 ]
Flinn, Brian [1 ]
Koerner, Carolin [2 ]
Bordia, Rajendra K. [1 ]
机构
[1] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA
[2] Univ Erlangen Nurnberg, Inst Sci & Technol Met, Dept Mat Sci, D-91058 Erlangen, Germany
基金
美国国家科学基金会;
关键词
titanium alloys; porous material; selective electron beam melting; fatigue; stress shielding; MECHANICAL-PROPERTIES; ORTHOPEDIC APPLICATIONS; BIOMEDICAL APPLICATIONS; AL-ALLOY; FABRICATION; IMPLANTS; FOAMS; REPLACEMENT; BEHAVIOR; METALS;
D O I
10.1002/jbm.b.31901
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Regular 3D periodic porous Ti-6Al-4V structures intended to reduce the effects of stress shielding in load-bearing bone replacement implants (e. g., hip stems) were fabricated over a range of relative densities (0.17-0.40) and pore sizes (similar to 500-1500 mu m) using selective electron beam melting (EBM). Compression-compression fatigue testing (15 Hz, R = 0.1) resulted in normalized fatigue strengths at 10(6) cycles ranging from 0.15 to 0.25, which is lower than the expected value of 0.4 for solid material of the same acicular alpha microstructure. The three possible reasons for this reduced fatigue lifetime are stress concentrations from closed porosity observed within struts, stress concentrations from observed strut surface features (sintered particles and texture lines), and microstructure (either acicular alpha or martensite) with less than optimal high-cycle fatigue resistance. (C) 2011 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 99B: 313-320, 2011.
引用
收藏
页码:313 / 320
页数:8
相关论文
共 40 条
[1]  
Ackelid U, 2009, ADDITIVE MANUFACTURI, P2711
[2]   MECHANICAL-PROPERTIES AND BIOMECHANICAL COMPATIBILITY OF POROUS TITANIUM FOR DENTAL IMPLANTS [J].
ASAOKA, K ;
KUWAYAMA, N ;
OKUNO, O ;
MIURA, I .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, 1985, 19 (06) :699-713
[3]  
ASHBY M. F., 2000, Metal Foams: A Design Guide
[4]  
Bobyn DJ, 1992, CLIN ORTHOP RELAT R, V274, P79
[5]  
Boyer R.R., 1987, Microstructure Fracture Toughness and Fatigue Crack Growth Rate in Titanium Alloys, P149
[6]   Properties of Ti-6Al-4V non-stochastic lattice structures fabricated via electron beam melting [J].
Cansizoglu, O. ;
Harrysson, O. ;
Cormier, D. ;
West, H. ;
Mahale, T. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2008, 492 (1-2) :468-474
[7]   THE EFFECT OF POST-SINTERING HEAT-TREATMENTS ON THE FATIGUE PROPERTIES OF POROUS COATED TI-6AL-4V ALLOY [J].
COOK, SD ;
THONGPREDA, N ;
ANDERSON, RC ;
HADDAD, RJ .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, 1988, 22 (04) :287-302
[8]   FATIGUE PROPERTIES OF CARBON-COATED AND POROUS-COATED TI-6AL-4V ALLOY [J].
COOK, SD ;
GEORGETTE, FS ;
SKINNER, HB ;
HADDAD, RJ .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, 1984, 18 (05) :497-512
[9]  
Davis JR., 2003, HDB MAT MED DEVICES
[10]  
Donachie M.J., 1989, Titanium: A Technical Guide, V2nd