Effect of asymmetry parameter on the dynamical states of nonlocally coupled nonlinear oscillators

被引:11
|
作者
Gopal, R. [1 ,2 ]
Chandrasekar, V. K. [3 ]
Senthilkumar, D. V. [3 ]
Venkatesan, A. [2 ]
Lakshmanan, M. [1 ]
机构
[1] Bharathidasan Univ, Sch Phys, Ctr Nonlinear Dynam, Tiruchirappalli 620024, Tamil Nadu, India
[2] Nehru Mem Coll, Dept Phys, Tiruchirappalli 621007, Tamil Nadu, India
[3] SASTRA Univ, Sch Elect & Elect Engn, Ctr Nonlinear Sci & Engn, Thanjavur 613401, India
来源
PHYSICAL REVIEW E | 2015年 / 91卷 / 06期
关键词
CHIMERA STATES; POPULATIONS; BEHAVIOR;
D O I
10.1103/PhysRevE.91.062916
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We show that coexisting domains of coherent and incoherent oscillations can be induced in an ensemble of any identical nonlinear dynamical systems using nonlocal rotational matrix coupling with an asymmetry parameter. Further, a chimera is shown to emerge in a wide range of the asymmetry parameter in contrast to near pi/2 values of it employed in earlier works. We have also corroborated our results using the strength of incoherence in the frequency domain (S-omega) and in the amplitude domain (S), thereby distinguishing the frequency and amplitude chimeras. The robust nature of the asymmetry parameter in inducing chimeras in any generic dynamical system is established using ensembles of identical Rossler oscillators, Lorenz systems, and Hindmarsh-Rose neurons in their chaotic regimes.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Collective Dynamical Behaviors of Nonlocally Coupled Brockett Oscillators
    Ramadoss, Janarthan
    Durairaj, Premraj
    Rajagopal, Karthikeyan
    Akgul, Akif
    Mathematical Problems in Engineering, 2023, 2023
  • [2] Chimera states in a ring of nonlocally coupled oscillators
    Abrams, DM
    Strogatz, SH
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (01): : 21 - 37
  • [3] Phase equation with nonlinear excitation for nonlocally coupled oscillators
    Strunin, D. V.
    PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (18) : 1909 - 1916
  • [4] Persistent chimera states in nonlocally coupled phase oscillators
    Suda, Yusuke
    Okuda, Koji
    PHYSICAL REVIEW E, 2015, 92 (06):
  • [5] A SYSTEMATIC STUDY OF NONLOCALLY COUPLED OSCILLATORS AND CHIMERA STATES
    Lin, Larry
    Li, Ping-Cheng
    Tseng, Hseng-Che
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2013, 27 (31):
  • [6] Chimera States in Populations of Nonlocally Coupled Chemical Oscillators
    Nkomo, Simbarashe
    Tinsley, Mark R.
    Showalter, Kenneth
    PHYSICAL REVIEW LETTERS, 2013, 110 (24)
  • [7] Breathing multichimera states in nonlocally coupled phase oscillators
    Suda, Yusuke
    Okuda, Koji
    PHYSICAL REVIEW E, 2018, 97 (04)
  • [8] Chimera states in nonlocally coupled phase oscillators with biharmonic interaction
    Cheng, Hongyan
    Dai, Qionglin
    Wu, Nianping
    Feng, Yuee
    Li, Haihong
    Yang, Junzhong
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 56 : 1 - 8
  • [9] Different kinds of chimera death states in nonlocally coupled oscillators
    Premalatha, K.
    Chandrasekar, V. K.
    Senthilvelan, M.
    Lakshmanan, M.
    PHYSICAL REVIEW E, 2016, 93 (05):
  • [10] Interaction of chimera states in a multilayered network of nonlocally coupled oscillators
    Goremyko, M. V.
    Maksimenko, V. A.
    Makarov, V. V.
    Ghosh, D.
    Bera, B.
    Dana, S. K.
    Hramov, A. E.
    TECHNICAL PHYSICS LETTERS, 2017, 43 (08) : 712 - 715