DECAY SOLUTIONS FOR A CLASS OF FRACTIONAL DIFFERENTIAL VARIATIONAL INEQUALITIES

被引:85
作者
Tran Dinh Ke [1 ]
Nguyen Van Loi [2 ]
Obukhovskii, Valeri [3 ]
机构
[1] Hanoi Natl Univ Educ, Dept Math, Hanoi, Vietnam
[2] PetroVietNam Univ, Fac Fundamental Sci, Ba Ria, Vietnam
[3] Voronezh State Pedag Univ, Fac Math & Phys, Voronezh 394043, Russia
基金
俄罗斯科学基金会;
关键词
differential variational inequality; fixed point; measure of noncompactness; MNC estimate; functional differential inclusion; condensing operator; CONTROLLABILITY;
D O I
10.1515/fca-2015-0033
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Our aim is to study a new class of differential variational inequalities involving fractional derivatives. Using the fixed point approach, the existence of decay solutions to the mentioned problem is proved.
引用
收藏
页码:531 / 553
页数:23
相关论文
共 29 条
[1]   A Survey on Existence Results for Boundary Value Problems of Nonlinear Fractional Differential Equations and Inclusions [J].
Agarwal, Ravi P. ;
Benchohra, Mouffak ;
Hamani, Samira .
ACTA APPLICANDAE MATHEMATICAE, 2010, 109 (03) :973-1033
[2]  
Akhmerov R. R., 1992, Operator Theory: Advances and Applications, V55
[3]  
[Anonymous], 1993, An Introduction to The Fractional Calculus and Fractional Differential Equations
[4]  
Aubin J.-P., 1984, Grundlehren der mathematischen Wissenschaften, V264
[5]  
Avgerinos EP, 1997, INDIAN J PURE AP MAT, V28, P1267
[6]   Observability of Nonlinear Fractional Dynamical Systems [J].
Balachandran, K. ;
Govindaraj, V. ;
Rivero, M. ;
Tenreiro Machado, J. A. ;
Trujillo, J. J. .
ABSTRACT AND APPLIED ANALYSIS, 2013,
[7]   Relative controllability of fractional dynamical systems with distributed delays in control [J].
Balachandran, K. ;
Zhou, Yong ;
Kokila, J. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (10) :3201-3209
[8]   Controllability of nonlinear fractional dynamical systems [J].
Balachandran, K. ;
Park, J. Y. ;
Trujillo, J. J. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (04) :1919-1926
[9]  
Banas J, 2009, Z ANAL ANWEND, V28, P475
[10]   Multivalued perturbations of m-accretive differential inclusions [J].
Bothe, D .
ISRAEL JOURNAL OF MATHEMATICS, 1998, 108 (1) :109-138