An ab initio study on energy gap of bilayer graphene nanoribbons with armchair edges

被引:60
作者
Lam, Kai-Tak [1 ]
Liang, Gengchiau [1 ]
机构
[1] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117579, Singapore
基金
新加坡国家研究基金会;
关键词
D O I
10.1063/1.2938058
中图分类号
O59 [应用物理学];
学科分类号
摘要
Dependency of energy bandgap (E-g) of bilayer armchair graphene nanoribbons (AGNR(B)) on their widths, interlayer distance (D), and edge doping concentration of boron/nitrogen was investigated using local density approximation and compare to the results of monolayer graphene nanoribbons (AGNR(M)). Although E-g of AGNR(B), in general, is smaller than that of AGNR(M), of AGNR(B) exhibits two distinct groups, metal and semiconductor, while AGNR(M) displays purely semiconducting behavior. Moreover, E-g of AGNR(B) is highly sensitive to D, indicating a possible application in tuning E-g by varying D. Finally, edge doping of both AGNR systems reduces E-g by 11%-17%/4%-10% for AGNR(M)/AGNR(B), respectively. (c) 2008 American Institute of Physics.
引用
收藏
页数:3
相关论文
共 25 条
[1]   Electronic confinement and coherence in patterned epitaxial graphene [J].
Berger, Claire ;
Song, Zhimin ;
Li, Xuebin ;
Wu, Xiaosong ;
Brown, Nate ;
Naud, Cecile ;
Mayou, Didier ;
Li, Tianbo ;
Hass, Joanna ;
Marchenkov, Atexei N. ;
Conrad, Edward H. ;
First, Phillip N. ;
de Heer, Wait A. .
SCIENCE, 2006, 312 (5777) :1191-1196
[2]   Density-functional method for nonequilibrium electron transport -: art. no. 165401 [J].
Brandbyge, M ;
Mozos, JL ;
Ordejón, P ;
Taylor, J ;
Stokbro, K .
PHYSICAL REVIEW B, 2002, 65 (16) :1654011-16540117
[3]   Electronic states of graphene nanoribbons studied with the Dirac equation [J].
Brey, L ;
Fertig, HA .
PHYSICAL REVIEW B, 2006, 73 (23)
[4]   Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect [J].
Castro, Eduardo V. ;
Novoselov, K. S. ;
Morozov, S. V. ;
Peres, N. M. R. ;
Dos Santos, J. M. B. Lopes ;
Nilsson, Johan ;
Guinea, F. ;
Geim, A. K. ;
Castro Neto, A. H. .
PHYSICAL REVIEW LETTERS, 2007, 99 (21)
[5]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[6]   Peculiar width dependence of the electronic properties of carbon nanoribbons [J].
Ezawa, M .
PHYSICAL REVIEW B, 2006, 73 (04)
[7]  
FUJITA M, 1920, J PHYS SOC JPN, V65, P1996
[8]   Making a field effect transistor on a single graphene nanoribbon by selective doping [J].
Huang, Bing ;
Yan, Qimin ;
Zhou, Gang ;
Wu, Jian ;
Gu, Bing-Lin ;
Duan, Wenhui ;
Liu, Feng .
APPLIED PHYSICS LETTERS, 2007, 91 (25)
[9]   Chiral tunnelling and the Klein paradox in graphene [J].
Katsnelson, M. I. ;
Novoselov, K. S. ;
Geim, A. K. .
NATURE PHYSICS, 2006, 2 (09) :620-625
[10]   Chemically derived, ultrasmooth graphene nanoribbon semiconductors [J].
Li, Xiaolin ;
Wang, Xinran ;
Zhang, Li ;
Lee, Sangwon ;
Dai, Hongjie .
SCIENCE, 2008, 319 (5867) :1229-1232