Intelligent data-driven aerodynamic analysis and optimization of morphing configurations

被引:17
作者
Magalhaes Junior, Jose M. [1 ]
Halila, Gustavo L. O. [2 ]
Kim, Yoobin [1 ]
Khamvilai, Thanakorn [1 ]
Vamvoudakis, Kyriakos G. [1 ]
机构
[1] Georgia Inst Technol, Atlanta, GA 30332 USA
[2] Inst Aeronaut & Espaco, BR-12228904 Sao Jose Dos Campos, SP, Brazil
基金
美国国家科学基金会;
关键词
Aerodynamic shape optimization; Data-driven aerodynamic design; Neural networks; Model predictive control; Aerodynamic design; DESIGN;
D O I
10.1016/j.ast.2022.107388
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
In this paper, we develop an online, data-based framework for the aircraft airfoil to be able to optimally morph vertically. The proposed framework combines data-driven analysis, optimization, and control theoretic tools to optimally morph airfoils while guaranteeing efficiency and safety. It incorporates a surrogate model that is based on a deep neural network that is used to predict the aerodynamic coefficients while a meta-heuristic optimization algorithm is employed to find shapes with reduced value of drag coefficient that fulfill the geometric and lift constraints. Finally, a data-driven shape controller is used to morph the airfoil while following smooth trajectories and small aerodynamic coefficient variations. Experimental numerical results show the efficacy of the proposed framework for different flight conditions.(c) 2022 Elsevier Masson SAS. All rights reserved.
引用
收藏
页数:15
相关论文
共 43 条
[1]  
Barr A. H., 1984, Computers & Graphics, V18, P21
[2]   Data-Driven Model Predictive Control With Stability and Robustness Guarantees [J].
Berberich, Julian ;
Koehler, Johannes ;
Mueller, Matthias A. ;
Allgoewer, Frank .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (04) :1702-1717
[3]   Prediction of aerodynamic flow fields using convolutional neural networks [J].
Bhatnagar, Saakaar ;
Afshar, Yaser ;
Pan, Shaowu ;
Duraisamy, Karthik ;
Kaushik, Shailendra .
COMPUTATIONAL MECHANICS, 2019, 64 (02) :525-545
[4]   Gradient-enhanced kriging for high-dimensional problems [J].
Bouhlel, Mohamed A. ;
Martins, Joaquim R. R. A. .
ENGINEERING WITH COMPUTERS, 2019, 35 (01) :157-173
[5]   Scalable gradient-enhanced artificial neural networks for airfoil shape design in the subsonic and transonic regimes [J].
Bouhlel, Mohamed Amine ;
He, Sicheng ;
Martins, Joaquim R. R. A. .
STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2020, 61 (04) :1363-1376
[6]   A Python']Python surrogate modeling framework with derivatives [J].
Bouhlel, Mohamed Amine ;
Hwang, John T. ;
Bartoli, Nathalie ;
Lafage, Remi ;
Morlier, Joseph ;
Martins, Joaquim R. R. A. .
ADVANCES IN ENGINEERING SOFTWARE, 2019, 135
[7]   Efficient global optimization for high-dimensional constrained problems by using the Kriging models combined with the partial least squares method [J].
Bouhlel, Mohamed Amine ;
Bartoli, Nathalie ;
Regis, Rommel G. ;
Otsmane, Abdelkader ;
Morlier, Joseph .
ENGINEERING OPTIMIZATION, 2018, 50 (12) :2038-2053
[8]   An Improved Approach for Estimating the Hyperparameters of the Kriging Model for High-Dimensional Problems through the Partial Least Squares Method [J].
Bouhlel, Mohamed Amine ;
Bartoli, Nathalie ;
Otsmane, Abdelkader ;
Morlier, Joseph .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2016, 2016
[9]   Improving kriging surrogates of high-dimensional design models by Partial Least Squares dimension reduction [J].
Bouhlel, Mohamed Amine ;
Bartoli, Nathalie ;
Otsmane, Abdelkader ;
Morlier, Joseph .
STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2016, 53 (05) :935-952
[10]  
Coulson J.L.J., 2021, IEEE T AUTOMAT CONTR