Gene Therapy Targets in Heart Failure: The Path to Translation

被引:19
|
作者
Raake, P. W. J. [1 ]
Tscheschner, H. [1 ]
Reinkober, J. [1 ]
Ritterhoff, J. [1 ]
Katus, H. A. [1 ]
Koch, W. J. [2 ]
Most, P. [1 ]
机构
[1] Heidelberg Univ, Dept Internal Med 3, Div Cardiol, Heidelberg, Germany
[2] Thomas Jefferson Univ, Dept Med, Ctr Translat Med, Philadelphia, PA 19107 USA
基金
美国国家卫生研究院;
关键词
CA2+-BINDING PROTEIN S100A1; CARDIAC CONTRACTILE FAILURE; ADRENERGIC-RECEPTOR KINASE; LEFT-VENTRICULAR FUNCTION; FAILING HUMAN HEARTS; BETA(2)-ADRENERGIC RECEPTOR; SARCOPLASMIC-RETICULUM; MYOCARDIAL-INFARCTION; PATHOPHYSIOLOGICAL RELEVANCE; BETA(1)-ADRENERGIC RECEPTOR;
D O I
10.1038/clpt.2011.148
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Heart failure (HF) is the common end point of cardiac diseases. Despite the optimization of therapeutic strategies and the consequent overall reduction in HF-related mortality, the key underlying intracellular signal transduction abnormalities have not been addressed directly. In this regard, the gaps in modern HF therapy include derangement of beta-adrenergic receptor (beta-AR) signaling, Ca2+ disbalances, cardiac myocyte death, diastolic dysfunction, and monogenetic cardiomyopathies. In this review we discuss the potential of gene therapy to fill these gaps and rectify abnormalities in intracellular signaling. We also examine current vector technology and currently available vector-delivery strategies, and we delineate promising gene therapy structures. Finally, we analyze potential limitations related to the transfer of successful preclinical gene therapy approaches to HF treatment in the clinic, as well as impending strategies aimed at overcoming these limitations.
引用
收藏
页码:542 / 553
页数:12
相关论文
共 50 条
  • [31] Gene therapy for cardiovascular disease: advances in vector development, targeting, and delivery for clinical translation
    Rincon, Melvin Y.
    VandenDriessche, Thierry
    Chuah, Marinee K.
    CARDIOVASCULAR RESEARCH, 2015, 108 (01) : 4 - 20
  • [32] Neuroendocrine Effects on the Heart and Targets for Therapeutic Manipulation in Heart Failure
    Chaggar, Parminder S.
    Malkin, Chris J.
    Shaw, Steven M.
    Williams, Simon G.
    Channer, Kevin S.
    CARDIOVASCULAR THERAPEUTICS, 2009, 27 (03) : 187 - 193
  • [33] Current and future G protein-coupled receptor signaling targets for heart failure therapy
    Siryk-Bathgate, Ashley
    Dabul, Samalia
    Lymperopoulos, Anastasios
    DRUG DESIGN DEVELOPMENT AND THERAPY, 2013, 7 : 1209 - 1222
  • [34] The Current and Future Landscape of SERCA Gene Therapy for Heart Failure: A Clinical Perspective
    Hayward, Carl
    Banner, Nicholas R.
    Morley-Smith, Andrew
    Lyon, Alexander R.
    Harding, Sian E.
    HUMAN GENE THERAPY, 2015, 26 (05) : 293 - 304
  • [35] Metabolic Therapy of Heart Failure
    Fragasso, Gabriele
    Salerno, Anna
    Spoladore, Roberto
    Bassanelli, Giorgio
    Arioli, Francesco
    Margonato, Alberto
    CURRENT PHARMACEUTICAL DESIGN, 2008, 14 (25) : 2582 - 2591
  • [36] Geroscience in heart failure: the search for therapeutic targets in the shared pathobiology of human aging and heart failure
    Castro, Claire
    Delwarde, Constance
    Shi, Yanxi
    Roh, Jason
    JOURNAL OF CARDIOVASCULAR AGING, 2025, 5 (01):
  • [37] Heart failure burden and therapy
    Zannad, Faiez
    Agrinier, Nelly
    Alla, Francois
    EUROPACE, 2009, 11 : 1 - 9
  • [38] Pathogenesis and pathophysiology of heart failure with reduced ejection fraction: translation to human studies
    Ge, Zijun
    Li, Amy
    McNamara, James
    dos Remedios, Cris
    Lal, Sean
    HEART FAILURE REVIEWS, 2019, 24 (05) : 743 - 758
  • [39] Cell Therapy for Heart Failure
    Terzic, Andre
    Perez-Terzic, Carmen
    REVISTA ESPANOLA DE CARDIOLOGIA, 2010, 63 (10): : 1117 - 1119
  • [40] Inflammatory Cytokines and Chemokines as Therapeutic Targets in Heart Failure
    Hanna, Anis
    Frangogiannis, Nikolaos G.
    CARDIOVASCULAR DRUGS AND THERAPY, 2020, 34 (06) : 849 - 863