A unifying concept of coccolithophore sensitivity to changing carbonate chemistry embedded in an ecological framework

被引:112
作者
Bach, Lennart Thomas [1 ]
Riebesell, Ulf [1 ]
Gutowska, Magdalena A. [1 ]
Federwisch, Luisa [1 ]
Schulz, Kai Georg [1 ]
机构
[1] GEOMAR Helmholtz Ctr Ocean Res Kiel, Biol Oceanog, D-24105 Kiel, Germany
关键词
EMILIANIA-HUXLEYI; INORGANIC CARBON; MARINE-PHYTOPLANKTON; OCEAN ACIDIFICATION; BLACK-SEA; CALCIFICATION; CO2; ACQUISITION; TEMPERATURE; SEAWATER;
D O I
10.1016/j.pocean.2015.04.012
中图分类号
P7 [海洋学];
学科分类号
0707 ;
摘要
Coccolithophores are a group of unicellular phytoplankton species whose ability to calcify has a profound influence on biogeochemical element cycling. Calcification rates are controlled by a large variety of biotic and abiotic factors. Among these factors, carbonate chemistry has gained considerable attention during the last years as coccolithophores have been identified to be particularly sensitive to ocean acidification. Despite intense research in this area, a general concept harmonizing the numerous and sometimes (seemingly) contradictory responses of coccolithophores to changing carbonate chemistry is still lacking to date. Here, we present the "substrate-inhibitor concept" which describes the dependence of calcification rates on carbonate chemistry speciation. It is based on observations that calcification rate scales positively with bicarbonate (HCO3-), the primary substrate for calcification, and carbon dioxide (CO2), which can limit cell growth, whereas it is inhibited by protons (H+). This concept was implemented in a model equation, tested against experimental data, and then applied to understand and reconcile the diverging responses of coccolithophorid calcification rates to ocean acidification obtained in culture experiments. Furthermore, we (i) discuss how other important calcification-influencing factors (e.g. temperature and light) could be implemented in our concept and (ii) embed it in Hutchinson's niche theory, thereby providing a framework for how carbonate chemistry-induced changes in calcification rates could be linked with changing coccolithophore abundance in the oceans. Our results suggest that the projected increase of H+ in the near future (next couple of thousand years), paralleled by only a minor increase of inorganic carbon substrate, could impede calcification rates if coccolithophores are unable to fully adapt. However, if calcium carbonate (CaCO3) sediment dissolution and terrestrial weathering begin to increase the oceans' HCO3- and decrease its H+ concentrations in the far future (10-100 kyears), coccolithophores could find themselves in carbonate chemistry conditions which may be more favorable for calcification than they were before the Anthropocene. (C) 2015 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:125 / 138
页数:14
相关论文
共 91 条
[32]  
Iglesias-Rodriguez M.D., 2008, RESPONSE COMMENT PHY, V322, p1466c
[33]   Phytoplankton calcification in a high-CO2 world [J].
Iglesias-Rodriguez, M. Debora ;
Halloran, Paul R. ;
Rickaby, Rosalind E. M. ;
Hall, Ian R. ;
Colmenero-Hidalgo, Elena ;
Gittins, John R. ;
Green, Darryl R. H. ;
Tyrrell, Toby ;
Gibbs, Samantha J. ;
von Dassow, Peter ;
Rehm, Eric ;
Armbrust, E. Virginia ;
Boessenkool, Karin P. .
SCIENCE, 2008, 320 (5874) :336-340
[34]   EVOLUTIONARY RESPONSES OF A COCCOLITHOPHORID GEPHYROCAPSA OCEANICA TO OCEAN ACIDIFICATION [J].
Jin, Peng ;
Gao, Kunshan ;
Beardall, John .
EVOLUTION, 2013, 67 (07) :1869-1878
[35]   Responses of the Emiliania huxleyi Proteome to Ocean Acidification [J].
Jones, Bethan M. ;
Iglesias-Rodriguez, M. Debora ;
Skipp, Paul J. ;
Edwards, Richard J. ;
Greaves, Mervyn J. ;
Young, Jeremy R. ;
Elderfield, Henry ;
O'Connor, C. David .
PLOS ONE, 2013, 8 (04)
[36]   Mechanistic niche modelling: combining physiological and spatial data to predict species' ranges [J].
Kearney, Michael ;
Porter, Warren .
ECOLOGY LETTERS, 2009, 12 (04) :334-350
[37]   PREPARATION OF ARTIFICIAL SEAWATER [J].
KESTER, DR ;
DUEDALL, IW ;
CONNORS, DN ;
PYTKOWICZ, RM .
LIMNOLOGY AND OCEANOGRAPHY, 1967, 12 (01) :176-+
[38]   A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP) [J].
Key, RM ;
Kozyr, A ;
Sabine, CL ;
Lee, K ;
Wanninkhof, R ;
Bullister, JL ;
Feely, RA ;
Millero, FJ ;
Mordy, C ;
Peng, TH .
GLOBAL BIOGEOCHEMICAL CYCLES, 2004, 18 (04) :1-23
[39]   Phytoplankton distribution in the Caspian Sea during March 2001 [J].
Kideys, AE ;
Soydemir, N ;
Eker, E ;
Vladymyrov, V ;
Soloviev, D ;
Melin, F .
HYDROBIOLOGIA, 2005, 543 (1) :159-168
[40]   Satellite monitoring of coccolithophore blooms in the Black Sea from ocean color data [J].
Kopelevich, O. ;
Burenkov, V. ;
Sheberstov, S. ;
Vazyulya, S. ;
Kravchishina, M. ;
Pautova, L. ;
Silkin, V. ;
Artemiev, V. ;
Grigoriev, A. .
REMOTE SENSING OF ENVIRONMENT, 2014, 146 :113-123