On the approximate calculation of multiple integrals

被引:41
作者
Bakhvalov, Nikolai Sergeevich [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Dept Computat Math, Moscow, Russia
关键词
Optimal quadrature formulas; Monte Carlo methods;
D O I
10.1016/j.jco.2014.12.003
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
When approximately calculating integrals of high dimension with the Monte Carlo method, one uses fewer values of the integrand than when calculating with the help of classical deterministic quadrature formulas. However, the error estimation for the Monte Carlo method does not depend on the smoothness of the integrand. This suggests that it is possible to obtain methods that give a better order of convergence in case of smooth functions. (C) 2015 Published by Elsevier Inc.
引用
收藏
页码:502 / 516
页数:15
相关论文
共 10 条
[1]  
Dahlquist G., 1954, NORD MAT TIDSKR, V2, P27
[2]  
Gelfand I. M., P 2 INT C OON US AT
[3]  
Gunter N. M., 1953, POTENTIAL THEORY APP
[4]  
Hammersley J.M., 1956, Mathematical proceedings of the Cambridge philosophical society, V52, P476
[5]  
Khinchin A. Y., 1949, Dover Books on Mathematics
[6]  
Khinchin A. Ya., 1936, USP MAT NAUK, P7
[7]  
KOLMOGOROV AN, 1956, DOKL AKAD NAUK SSSR+, V108, P385
[8]  
Korobov N. M., 1959, VESTNIK MOSKOV MMAFH, V1959, P19
[9]  
KOROBOV NM, 1957, DOKL AKAD NAUK SSSR+, V115, P1062
[10]  
Roth KF., 1955, Mathematika, V2, P1, DOI [10.1112/S0025579300000644, DOI 10.1112/S0025579300000826]