Potential well method for Cauchy problem of generalized double dispersion equations

被引:50
作者
Liu Yacheng [1 ]
Xu Runzhang [1 ,2 ]
机构
[1] Harbin Engn Univ, Coll Sci, Harbin 150001, Peoples R China
[2] Harbin Engn Univ, Coll Automat, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
generalized double dispersion equations; Cauchy problem; potential wells; global existence; nonexistence; NONLINEAR-WAVE EQUATIONS; GLOBAL EXISTENCE; ASYMPTOTIC STABILITY; BLOW-UP; INSTABILITY;
D O I
10.1016/j.jmaa.2007.05.076
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study Cauchy problem of generalized double dispersion equations u(tt)-u(xx)-u(xxtt)+u(xxxx)=f(u)(xx), where f (u) = |u|(p), p > 1 or u(2k), k = 1, 2,.... By introducing a family of potential wells we not only get a threshold result of global existence and nonexistence of solutions, but also obtain the invariance of some sets and vacuum isolating of solutions. In addition, the global existence and finite time blow up of solutions for problem with critical initial conditions E (0) = d, I (u(0)) >= 0 or I (u(0)) < 0 are proved. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:1169 / 1187
页数:19
相关论文
共 34 条
[21]  
Ono K, 1997, MATH METHOD APPL SCI, V20, P151, DOI 10.1002/(SICI)1099-1476(19970125)20:2<151::AID-MMA851>3.0.CO
[22]  
2-0
[23]  
PASTERNAK NL, NEW METHOD CALCULATI
[24]   SADDLE POINTS AND INSTABILITY OF NONLINEAR HYPERBOLIC EQUATIONS [J].
PAYNE, LE ;
SATTINGER, DH .
ISRAEL JOURNAL OF MATHEMATICS, 1975, 22 (3-4) :273-303
[25]  
Samsonov A., 1989, Nonlinear Waves in Active Media, P99
[26]  
Samsonov A.M., 1994, CISM COURSES LECT, V341
[27]  
SATTINGER DH, 1968, ARCH RATION MECH AN, V30, P148
[28]  
Tsutsumi M., 1972, PUBL RES I MATH SCI, V8, P211, DOI DOI 10.2977/PRIMS/1195193108
[29]   A potential well theory for the wave equation with nonlinear source and boundary damping terms [J].
Vitillaro, E .
GLASGOW MATHEMATICAL JOURNAL, 2002, 44 :375-395
[30]   Cauchy problem of the generalized double dispersion equation [J].
Wang, SB ;
Chen, GW .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (01) :159-173