Hyperspectral near infrared image calibration and regression

被引:10
作者
Makela, Mikko [1 ,2 ]
Geladi, Paul [2 ]
Rissanen, Marja [1 ]
Rautkari, Lauri [1 ]
Dahl, Olli [1 ]
机构
[1] Aalto Univ, Sch Chem Engn, Dept Bioprod & Biosyst, POB 16300, Aalto 00076, Finland
[2] Swedish Univ Agr Sci, Dept Forest Biomat & Technol, S-90183 Umea, Sweden
基金
芬兰科学院;
关键词
Hyperspectral imaging; Reflectance calibration; Prediction; Partial least squares; Textile analysis; Pseudorank; IN-LINE ANALYSIS; TOOL;
D O I
10.1016/j.aca.2020.01.019
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Reference materials are used in diffuse reflectance imaging for transforming the digitized camera signal into reflectance and absorbance units for subsequent interpretation. Traditional white and dark reference signals are generally used for calculating reflectance or absorbance, but these can be supplemented with additional reflectance targets to improve the accuracy of reflectance transformations. In this work we provide an overview of hyperspectral image regression and assess the effects of reflectance calibration on image interpretation using partial least squares regression. Linear and quadratic reflectance transformations based on additional reflectance targets decrease average measurement errors and make it easier to estimate model pseudorank during image regression. The lowest measurement and prediction errors were obtained with the column and wavelength specific quadratic transformations which retained the spatial information provided by the line-scanning instrument and reduced errors in the predicted concentration maps. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:56 / 63
页数:8
相关论文
共 28 条
[1]   Hyperspectral image analysis. A tutorial [J].
Amigo, Jose Manuel ;
Babamoradi, Hamid ;
Elcoroaristizabal, Saioa .
ANALYTICA CHIMICA ACTA, 2015, 896 :34-51
[2]  
Blanch-Perez-del-Notario C., 2019, J SPECTR IMAGING, V8, pa17, DOI [10.1255/jsi.2019.a17, DOI 10.1255/JSI.2019.A17]
[3]   Hyperspectral imaging: a review of best practice, performance and pitfalls for in-line and on-line applications [J].
Boldrini, Barbara ;
Kessler, Waltraud ;
Rebner, Karsten ;
Kessler, Rudolf W. .
JOURNAL OF NEAR INFRARED SPECTROSCOPY, 2012, 20 (05) :483-508
[4]   Centering and scaling in component analysis [J].
Bro, R ;
Smilde, AK .
JOURNAL OF CHEMOMETRICS, 2003, 17 (01) :16-33
[5]   Spectral Characterization of Near-Infrared Acousto-optic Tunable Filter (AOTF) Hyperspectral Imaging Systems Using Standard Calibration Materials [J].
Buermen, Miran ;
Pernus, Franjo ;
Likar, Bostjan .
APPLIED SPECTROSCOPY, 2011, 65 (04) :393-401
[6]   Hyperspectral NIR image regression part 1: Calibration and correction [J].
Burger, J ;
Geladi, P .
JOURNAL OF CHEMOMETRICS, 2005, 19 (5-7) :355-363
[7]  
Burger J.E., 2006, Hyperspectral NIR image Analysis
[8]   Hyperspectral NIR image regression part II: Dataset preprocessing diagnostics [J].
Burger, James ;
Geladi, Paul .
JOURNAL OF CHEMOMETRICS, 2006, 20 (3-4) :106-119
[9]   Data handling in hyperspectral image analysis [J].
Burger, James ;
Gowen, Aoife .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2011, 108 (01) :13-22
[10]  
De Juan A., 2014, Infrared and Raman Spectroscopic Imaging, V2, P57, DOI [10.1002/9783527678136.ch2, DOI 10.1002/9783527678136.CH2]