Time-stepping discontinuous Galerkin methods for fractional diffusion problems

被引:65
作者
Mustapha, Kassem [1 ]
机构
[1] King Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran 31261, Saudi Arabia
关键词
FINITE-DIFFERENCE METHOD; DIRECTION IMPLICIT SCHEMES; NUMERICAL-METHOD; HP-VERSION; EVOLUTION EQUATION; STABILITY; DISCRETIZATION; CONVERGENCE;
D O I
10.1007/s00211-014-0669-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Time-stepping -versions discontinuous Galerkin (DG) methods for the numerical solution of fractional subdiffusion problems of order with will be proposed and analyzed. Generic -version error estimates are derived after proving the stability of the approximate solution. For -version DG approximations on appropriate graded meshes near , we prove that the error is of order , where is the maximum time-step size and is the uniform degree of the DG solution. For -version DG approximations, by employing geometrically refined time-steps and linearly increasing approximation orders, exponential rates of convergence in the number of temporal degrees of freedom are shown. Finally, some numerical tests are given.
引用
收藏
页码:497 / 516
页数:20
相关论文
共 34 条
[1]  
A Kilbas A. A., Theory and applications of fractional differential equations, V204
[2]   Numerical schemes and multivariate extrapolation of a two-dimensional anomalous sub-diffusion equation [J].
Chen, Chang-Ming ;
Liu, Fawang ;
Turner, Ian ;
Anh, Vo .
NUMERICAL ALGORITHMS, 2010, 54 (01) :1-21
[3]   Convergence analysis of high-order compact alternating direction implicit schemes for the two-dimensional time fractional diffusion equation [J].
Cui, Mingrong .
NUMERICAL ALGORITHMS, 2013, 62 (03) :383-409
[4]   Compact alternating direction implicit method for two-dimensional time fractional diffusion equation [J].
Cui, Mingrong .
JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (06) :2621-2633
[5]   Compact finite difference method for the fractional diffusion equation [J].
Cui, Mingrong .
JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (20) :7792-7804
[6]   ERROR ESTIMATES FOR A SEMIDISCRETE FINITE ELEMENT METHOD FOR FRACTIONAL ORDER PARABOLIC EQUATIONS [J].
Jin, Bangti ;
Lazarov, Raytcho ;
Zhou, Zhi .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (01) :445-466
[7]   The accuracy and stability of an implicit solution method for the fractional diffusion equation [J].
Langlands, TAM ;
Henry, BI .
JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 205 (02) :719-736
[8]   Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term [J].
Liu, F. ;
Yang, C. ;
Burrage, K. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 231 (01) :160-176
[9]  
Mathai AM, 2010, H-FUNCTION: THEORY AND APPLICATIONS, P1, DOI 10.1007/978-1-4419-0916-9
[10]   A second-order accurate numerical method for a fractional wave equation [J].
McLean, William ;
Mustapha, Kassem .
NUMERISCHE MATHEMATIK, 2007, 105 (03) :481-510