Kernel classification using a linear programming approach

被引:0
作者
Malyscheff, Alexander M. [1 ]
Trafalis, Theodore B. [2 ]
机构
[1] Univ Oklahoma, Sch Elect & Comp Engn, 110 W Boyd, Norman, OK 73019 USA
[2] Univ Oklahoma, Sch Ind & Syst Engn, 202 W Boyd, Norman, OK 73019 USA
关键词
Kernel methods; Classification; Linear programming;
D O I
10.1007/s10472-019-09642-w
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A support vector machine (SVM) classifier corresponds in its most basic form to a quadratic programming problem. Various linear variations of support vector classification have been investigated such as minimizing the L-1-norm of the weight-vector instead of the L-2-norm. In this paper we introduce a classifier where we minimize the boundary (lower envelope) of the epigraph that is generated over a set of functions, which can be interpreted as a measure of distance or slack from the origin. The resulting classifier appears to provide a generalization performance similar to SVMs while displaying a more advantageous computational complexity. The discussed formulation can also be extended to allow for cases with imbalanced data.
引用
收藏
页码:39 / 51
页数:13
相关论文
共 20 条
[11]  
Herbrich R., 2000, 8th European Symposium on Artificial Neural Networks. ESANN"2000. Proceedings, P49
[12]  
Malyscheff A., 2002, CENT EUR J OPER RES, V10, P297
[14]  
Pedregosa F, 2011, J MACH LEARN RES, V12, P2825
[15]   An analytic center machine [J].
Trafalis, TB ;
Malyscheff, AM .
MACHINE LEARNING, 2002, 46 (1-3) :203-223
[16]  
Van Rossum G., 1995, Centrum voor Wiskunde en Informatica Amsterdam
[17]  
Vapnik V., 1998, STAT LEARNING THEORY, V1st
[18]  
Vapnik Vladimir, 1999, The Nature of Statistical Learning Theory, DOI DOI 10.1007/978-1-4757-2440-0
[19]  
Xanthopoulos P., 2012, ROBUST DATA MINING
[20]   Robust generalized eigenvalue classifier with ellipsoidal uncertainty [J].
Xanthopoulos, Petros ;
Guarracino, Mario R. ;
Pardalos, Panos M. .
ANNALS OF OPERATIONS RESEARCH, 2014, 216 (01) :327-342