A Novel Learning-based Hard Decoding Scheme and Symbol-Level Precoding Countermeasures

被引:0
作者
Mayouche, Abderrahmane [1 ]
Martins, Wallace A. [1 ]
Tsinos, Christos G. [1 ]
Chatzinotas, Symeon [1 ]
Ottersten, Bjorn [1 ]
机构
[1] Univ Luxembourg, Interdisciplinary Ctr Secur Reliabil & Trust SnT, Esch Sur Alzette, Luxembourg
来源
2021 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC) | 2021年
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
Physical-layer security; symbol-level precoding; machine learning; channel coding; and multi-user interference; OF-THE-ART; INTERFERENCE; EXPLOITATION; DOWNLINK;
D O I
10.1109/WCNC49053.2021.9417499
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this work, we consider an eavesdropping scenario in wireless multi-user (MU) multiple-input single-output (MISO) systems with channel coding in the presence of a multi-antenna eavesdropper (Eve). In this setting, we exploit machine learning (ML) tools to design a hard decoding scheme by using precoded pilot symbols as training data. Within this, we propose an ML framework for a multi-antenna hard decoder that allows an Eve to decode the transmitted message with decent accuracy. We show that MU-MISO systems are vulnerable to such an attack when conventional block-level precoding is used. To counteract this attack, we propose a novel symbol-level precoding scheme that increases the bit-error rate at Eve by obstructing the learning process. Simulation results validate both the ML-based attack as well as the countermeasure, and show that the gain in security is achieved without affecting the performance at the intended users.
引用
收藏
页数:6
相关论文
共 24 条
[11]   A Tutorial on Interference Exploitation via Symbol-Level Precoding: Overview, State-of-the-Art and Future Directions [J].
Li, Ang ;
Spano, Danilo ;
Krivochiza, Jevgenij ;
Domouchtsidis, Stavros ;
Tsinos, Christos G. ;
Masouros, Christos ;
Chatzinotas, Symeon ;
Li, Yonghui ;
Vucetic, Branka ;
Ottersten, Bjorn .
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2020, 22 (02) :796-839
[12]   Physical Layer Security for Next Generation Wireless Networks: Theories, Technologies, and Challenges [J].
Liu, Yiliang ;
Chen, Hsiao-Hwa ;
Wang, Liangmin .
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2017, 19 (01) :347-376
[13]   Dynamic Linear Precoding for the Exploitation of Known Interference in MIMO Broadcast Systems [J].
Masouros, Christos ;
Alsusa, Emad .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2009, 8 (03) :1396-1404
[14]   Learning-Assisted Eavesdropping and Symbol-Level Precoding Countermeasures for Downlink MU-MISO Systems [J].
Mayouche, Abderrahmane ;
Spano, Danilo ;
Tsinos, Christos G. ;
Chatzinotas, Symeon ;
Ottersten, Bjorn .
IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2020, 1 :535-549
[15]  
Mayouche A, 2019, IEEE CONF COMM NETW
[16]   5G Wireless Network Slicing for eMBB, URLLC, and mMTC: A Communication-Theoretic View [J].
Popovski, Petar ;
Trillingsgaard, Kasper Floe ;
Simeone, Osvaldo ;
Durisi, Giuseppe .
IEEE ACCESS, 2018, 6 :55765-55779
[17]   A Vision of 6G Wireless Systems: Applications, Trends, Technologies, and Open Research Problems [J].
Saad, Walid ;
Bennis, Mehdi ;
Chen, Mingzhe .
IEEE NETWORK, 2020, 34 (03) :134-142
[18]   Symbol-Level Precoding for the Nonlinear Multiuser MISO Downlink Channel [J].
Spano, Danilo ;
Alodeh, Maha ;
Chatzinotas, Symeon ;
Ottersten, Bjoern .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (05) :1331-1345
[19]   A personal history of the Viterbi algorithm - Editors' introduction [J].
Dumitras, Adriana ;
Moschytz, George .
IEEE SIGNAL PROCESSING MAGAZINE, 2006, 23 (04) :120-120
[20]   Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks [J].
Wang, Jingjing ;
Jiang, Chunxiao ;
Zhang, Haijun ;
Ren, Yong ;
Chen, Kwang-Cheng ;
Hanzo, Lajos .
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2020, 22 (03) :1472-1514