Stability of Global Maxwellian for Fully Nonlinear Fokker-Planck Equations

被引:0
|
作者
Liao, Jie [1 ]
Yang, Xiongfeng [2 ,3 ]
机构
[1] East China Univ Sci & Technol, Sch Math, Shanghai 200237, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Math Sci, MOE LSC, Shanghai 200240, Peoples R China
[3] Shanghai Jiao Tong Univ, Sch Math Sci, SHL MAC, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Non-linear Fokker-Planck equation; Macro-micro decomposition; Global a priori estimates; Global Maxwellian; CLASSICAL-SOLUTIONS; EQUILIBRIUM; BEHAVIOR; SYSTEM;
D O I
10.1007/s10955-021-02844-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper considers the stability of solutions around a global Maxwellian to the fully non-linear Fokker-Planck equation in the whole space. This model preserves mass, momentum and energy at the same time, and its dissipation is much weaker than that in the simplified model considered in Liao et al. (J Stat Phys 173:222-241, 2018). To overcome the new difficulties, the macro-micro decomposition of the solution around the local Maxwellian and energy estimates introduced in Liu et al. (Physica D 188:178-192, 2004) and Yang and Zhao (J Math Phys 47:053301, 2006) for Boltzmann equation is used. That is, we reformulate the model into a fluid-type system coupled with an equation of the microscopic part. The a priori estimates of the solution could be obtained by the standard energy method. Especially, by careful computation, the viscosity and heat diffusion terms in the fluid-type system are derived from the microscopic part, which give the dissipative mechanism to the system.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Stability of Global Maxwellian for Fully Nonlinear Fokker–Planck Equations
    Jie Liao
    Xiongfeng Yang
    Journal of Statistical Physics, 2021, 185
  • [2] Stochastic nonlinear Fokker-Planck equations
    Coghi, Michele
    Gess, Benjamin
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 187 : 259 - 278
  • [3] Solution of nonlinear Fokker-Planck equations
    Drozdov, AN
    Morillo, M
    PHYSICAL REVIEW E, 1996, 54 (01): : 931 - 937
  • [4] Existence, Stability and Regularity of Periodic Solutions for Nonlinear Fokker-Planck Equations
    Lucon, Eric
    Poquet, Christophe
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2024, 36 (01) : 633 - 671
  • [5] A fully discrete pseudospectral method for the nonlinear Fokker-Planck equations on the whole line
    Wang, Tian-jun
    Chai, Guo
    APPLIED NUMERICAL MATHEMATICS, 2022, 174 : 17 - 33
  • [6] Linearization of nonlinear Fokker-Planck equations and applications
    Ren, Panpan
    Roeckner, Michael
    Wang, Feng-Yu
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 322 : 1 - 37
  • [7] Nonlinear Fokker-Planck equations and generalized entropies
    Martinez, S.
    Plastino, A.R.
    Plastino, A.
    Physica A: Statistical Mechanics and its Applications, 1998, 259 (1-2): : 183 - 192
  • [8] Nonlinear Fokker-Planck equations and generalized entropies
    Martinez, S
    Plastino, AR
    Plastino, A
    PHYSICA A, 1998, 259 (1-2): : 183 - 192
  • [9] Microscopic dynamics of nonlinear Fokker-Planck equations
    Santos, Leonardo
    PHYSICAL REVIEW E, 2021, 103 (03)
  • [10] Entropy production and nonlinear Fokker-Planck equations
    Casas, G. A.
    Nobre, F. D.
    Curado, E. M. F.
    PHYSICAL REVIEW E, 2012, 86 (06):