Screening of the effect of surface energy of microchannels on microfluidic emulsification

被引:70
作者
Li, Wei
Nie, Zhihong
Zhang, Hong
Paquet, Chantal
Seo, Minseok
Garstecki, Piotr [1 ]
Kumacheva, Eugenia
机构
[1] Univ Toronto, Dept Chem, Toronto, ON M5S 3H6, Canada
[2] Polish Acad Sci, Inst Phys Chem, PL-01224 Warsaw, Poland
关键词
D O I
10.1021/la7005875
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report the results of a systematic study of the effect of the surface energy of the walls of microchannels on emulsification in parallel flow-focusing microfluidic devices. We investigated the formation of water-in-oil (W/O) and oil-in-water (O/W) emulsions and found that the stability of microfluidic emulsification depends critically on the preferential wetting of the walls of the microfluidic device by the continuous phase. The condition for stable operation of the device is, however, different than that of complete wetting of the walls by the continuous phase at equilibrium. We found that W/O emulsions form when the advancing contact angle of water on the channel wall exceeds theta approximate to 92 degrees. This result is unexpected because at equilibrium even for theta < 92 degrees the microchannels would be completely wet by the organic phase. The criterion for the formation of W/O emulsions (theta > 92 degrees) is thus more stringent than the equilibrium conditions. Conversely, we observed the stable formation of O/W emulsions for theta < 92 degrees, that is, when the nonequilibrium transition to complete wetting by oil takes place. These results underlie the importance of pinning and the kinetic wetting effects in microfluidic emulsification. The results suggest that the use of parallel devices can facilitate fast screening of physicochemical conditions for emulsification.
引用
收藏
页码:8010 / 8014
页数:5
相关论文
共 34 条
[1]   Formation of dispersions using "flow focusing" in microchannels [J].
Anna, SL ;
Bontoux, N ;
Stone, HA .
APPLIED PHYSICS LETTERS, 2003, 82 (03) :364-366
[2]   Stable modification of PDMS surface properties by plasma polymerization: Application to the formation of double emulsions in microfluidic systems [J].
Barbier, Valessa ;
Tatoulian, Michael ;
Li, Hong ;
Arefi-Khonsari, Farzaneh ;
Ajdari, Armand ;
Tabeling, Patrick .
LANGMUIR, 2006, 22 (12) :5230-5232
[3]   High-temperature microfluidic synthesis of CdSe nanocrystals in nanoliter droplets [J].
Chan, EM ;
Alivisatos, AP ;
Mathies, RA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (40) :13854-13861
[4]   Microfluidic platform for the generation of organic-phase microreactors [J].
Cygan, ZT ;
Cabral, JT ;
Beers, KL ;
Amis, EJ .
LANGMUIR, 2005, 21 (08) :3629-3634
[5]   WETTING - STATICS AND DYNAMICS [J].
DEGENNES, PG .
REVIEWS OF MODERN PHYSICS, 1985, 57 (03) :827-863
[6]   Controlled synthesis of nonspherical microparticles using microfluidics [J].
Dendukuri, D ;
Tsoi, K ;
Hatton, TA ;
Doyle, PS .
LANGMUIR, 2005, 21 (06) :2113-2116
[7]   Ordered and disordered patterns in two-phase flows in microchannels [J].
Dreyfus, R ;
Tabeling, P ;
Willaime, H .
PHYSICAL REVIEW LETTERS, 2003, 90 (14) :4
[8]   Formation of droplets and bubbles in a microfluidic T-junction - scaling and mechanism of break-up [J].
Garstecki, P ;
Fuerstman, MJ ;
Stone, HA ;
Whitesides, GM .
LAB ON A CHIP, 2006, 6 (03) :437-446
[9]   Formation of monodisperse bubbles in a microfluidic flow-focusing device [J].
Garstecki, P ;
Gitlin, I ;
DiLuzio, W ;
Whitesides, GM ;
Kumacheva, E ;
Stone, HA .
APPLIED PHYSICS LETTERS, 2004, 85 (13) :2649-2651
[10]   Stability of parallel flows in a microchannel after a T junction [J].
Guillot, P ;
Colin, A .
PHYSICAL REVIEW E, 2005, 72 (06)