Elucidation of Iron Gettering Mechanisms in Boron-Implanted Silicon Solar Cells

被引:1
作者
Laine, Hannu S. [1 ]
Vahanissi, Ville [1 ]
Liu, Zhengjun [1 ]
Magana, Ernesto [2 ]
Kruegener, Jan [3 ]
Morishige, Ashley E. [4 ,5 ]
Salo, Kristian [1 ]
Lai, Barry [6 ]
Savin, Hele [1 ]
Fenning, David P. [2 ]
机构
[1] Aalto Univ, Dept Elect & Nanoengn, Espoo 02150, Finland
[2] Univ Calif San Diego, Dept Nanoengn, La Jolla, CA 92093 USA
[3] Leibniz Univ Hannover, Inst Elect Mat & Devices, D-30167 Hannover, Germany
[4] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[5] 1366 Technol Inc, Bedford, MA 01730 USA
[6] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA
来源
IEEE JOURNAL OF PHOTOVOLTAICS | 2018年 / 8卷 / 01期
基金
芬兰科学院;
关键词
Boron implantation; gettering; iron; silicon; simulation; CRYSTALLINE SILICON; TRANSITION-METALS; ION-IMPLANTATION; EFFICIENCY; DEFECTS; CONTAMINATION; PROFILES; IMPACT;
D O I
10.1109/JPHOTOV.2017.2775159
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
To facilitate cost-effective manufacturing of boron-implanted silicon solar cells as an alternative to BBr3 diffusion, we performed a quantitative test of the gettering induced by solar-typical boron-implants with the potential for low saturation current density emitters (< 50 fA/cm(2)). We show that depending on the contamination level and the gettering anneal chosen, such boron-implanted emitters can induce more than a 99.9% reduction in bulk iron point defect concentration. The iron point defect results as well as synchrotron-based nano-X-ray-fluorescence investigations of iron precipitates formed in the implanted layer imply that, with the chosen experimental parameters, iron precipitation is the dominant gettering mechanism, with segregation-based gettering playing a smaller role. We reproduce the measured iron point defect and precipitate distributions via kinetics modeling. First, we simulate the structural defect distribution created by the implantation process, and then we model these structural defects as heterogeneous precipitation sites for iron. Unlike previous theoretical work on gettering via boron-or phosphorus-implantation, our model is free of adjustable simulation parameters. The close agreement between the model and experimental results indicates that the model successfully captures the necessary physics to describe the iron gettering mechanisms operating in boron-implanted silicon. This modeling capability allows high-performance, cost-effective implanted silicon solar cells to be designed.
引用
收藏
页码:79 / 88
页数:10
相关论文
共 75 条
[1]   FUNDAMENTAL PROPERTIES OF INTRINSIC GETTERING OF IRON IN A SILICON-WAFER [J].
AOKI, M ;
HARA, A ;
OHSAWA, A .
JOURNAL OF APPLIED PHYSICS, 1992, 72 (03) :895-898
[2]   Competitive iron gettering between internal gettering sites and boron implantation in CZ-silicon [J].
Asghar, M. I. ;
Yli-Koski, M. ;
Savin, H. ;
Haarahiltunen, A. ;
Talvitie, H. ;
Sinkkonen, J. .
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2009, 159-60 :224-227
[3]   The mechanisms of iron gettering in silicon by boron ion-implantation [J].
Benton, JL ;
Stolk, PA ;
Eaglesham, DJ ;
Jacobson, DC ;
Cheng, JY ;
Poate, JM ;
Myers, SM ;
Haynes, TE .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (04) :1406-1409
[4]   Iron gettering mechanisms in silicon [J].
Benton, JL ;
Stolk, PA ;
Eaglesham, DJ ;
Jacobson, DC ;
Cheng, JY ;
Poate, JM ;
Ha, NT ;
Haynes, TE ;
Myers, SM .
JOURNAL OF APPLIED PHYSICS, 1996, 80 (06) :3275-3284
[5]   Shunt types in crystalline silicon solar cells [J].
Breitenstein, O ;
Rakotoniaina, JP ;
Al Rifai, MH ;
Werner, M .
PROGRESS IN PHOTOVOLTAICS, 2004, 12 (07) :529-538
[6]   Simulation of metallic impurity gettering in silicon by MeV ion implantation [J].
Brown, RA ;
Kononchuk, O ;
Rozgonyi, GA .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 1999, 148 (1-4) :322-328
[7]   Observation of transition metals at shunt locations in multicrystalline silicon solar cells [J].
Buonassisi, T ;
Vyvenko, OF ;
Istratov, AA ;
Weber, ER ;
Hahn, G ;
Sontag, D ;
Rakotoniaina, JP ;
Breitenstein, O ;
Isenberg, J ;
Schindler, R .
JOURNAL OF APPLIED PHYSICS, 2004, 95 (03) :1556-1561
[8]   Phosphorus vacancy cluster model for phosphorus diffusion gettering of metals in Si [J].
Chen, Renyu ;
Trzynadlowski, Bart ;
Dunham, Scott T. .
JOURNAL OF APPLIED PHYSICS, 2014, 115 (05)
[9]   GROWTH-KINETICS OF DISK-SHAPED EXTENDED DEFECTS WITH CONSTANT THICKNESS [J].
DUNHAM, ST .
APPLIED PHYSICS LETTERS, 1993, 63 (04) :464-466
[10]   Improved iron gettering of contaminated multicrystalline silicon by high-temperature phosphorus diffusion [J].
Fenning, D. P. ;
Zuschlag, A. S. ;
Bertoni, M. I. ;
Lai, B. ;
Hahn, G. ;
Buonassisi, T. .
JOURNAL OF APPLIED PHYSICS, 2013, 113 (21)