Patch-based Segmentation of Latent Fingerprint Images Using Convolutional Neural Network

被引:8
|
作者
Khan, Asif Iqbal [1 ]
Wani, Mohd Arif [1 ]
机构
[1] Univ Kashmir, Dept Comp Sci, Srinagar 190006, Jammu & Kashmir, India
关键词
Complex networks - Convolution - Image classification - Image segmentation - Neural networks - Object recognition - Palmprint recognition;
D O I
10.1080/08839514.2018.1526704
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Latent fingerprint segmentation involves marking out all the foreground regions accurately in a latent fingerprint image, but due to poor quality images and complex background, segmentation of latent fingerprint images is one of the most difficult tasks in automatic latent fingerprint recognition systems. In this article, we propose a patch-based technique for segmentation of latent fingerprint images, which uses Convolutional Neural Network (CNN) to classify patches. CNN has recently shown impressive performance in the field of pattern recognition, classification, and object detection, which inspired us to use CNN for this complex task. We trained the CNN model using SGD to classify image patches into fingerprint and non-fingerprint classes followed by proposed false patch removal technique, which uses "majority of neighbors" to remove the isolated and miss-classified patches. Finally, based on the final class of patches, an ROI is constructed to mark out the foreground from the background of latent fingerprint images. We tested our model on IIIT-D latent fingerprint database and the experimental results show improvements in the overall accuracy compared to existing methods.
引用
收藏
页码:87 / 100
页数:14
相关论文
共 50 条
  • [1] Patch-Based Deep Convolutional Neural Network for Corneal Ulcer Area Segmentation
    Sun, Qichao
    Deng, Lijie
    Liu, Jianwei
    Huang, Haixiang
    Yuan, Jin
    Tang, Xiaoying
    FETAL, INFANT AND OPHTHALMIC MEDICAL IMAGE ANALYSIS, 2017, 10554 : 101 - 108
  • [2] Patch-based Convolutional Neural Network for Atherosclerotic Carotid Plaque Semantic Segmentation
    Dasic, Lazar
    Radovanovic, Nikola
    Sustersic, Tijana
    Blagojevic, Andela
    Benolic, Leo
    Filipovic, Nenad
    IPSI BGD TRANSACTIONS ON INTERNET RESEARCH, 2022, 18 (01): : 56 - 61
  • [3] Lung Nodule Detection in CT Images Using a Raw Patch-Based Convolutional Neural Network
    Qin Wang
    Fengyi Shen
    Linyao Shen
    Jia Huang
    Weiguang Sheng
    Journal of Digital Imaging, 2019, 32 : 971 - 979
  • [4] Lung Nodule Detection in CT Images Using a Raw Patch-Based Convolutional Neural Network
    Wang, Qin
    Shen, Fengyi
    Shen, Linyao
    Huang, Jia
    Sheng, Weiguang
    JOURNAL OF DIGITAL IMAGING, 2019, 32 (06) : 971 - 979
  • [5] Latent Fingerprint Segmentation Based on Convolutional Neural Networks
    Zhu, Yanming
    Yin, Xuefei
    Jia, Xiuping
    Hu, Jiankun
    2017 IEEE WORKSHOP ON INFORMATION FORENSICS AND SECURITY (WIFS), 2017,
  • [6] Brain Tumor Segmentation Using a Patch-Based Convolutional Neural Network: A Big Data Analysis Approach
    Ullah, Faizan
    Salam, Abdu
    Abrar, Mohammad
    Amin, Farhan
    MATHEMATICS, 2023, 11 (07)
  • [7] Deep Convolutional Neural Network for Accurate Classification of Myofibroblastic Lesions on Patch-Based Images
    Giraldo-Roldan, Daniela
    dos Santos, Giovanna Calabrese
    Araujo, Anna Luiza Damaceno
    Nakamura, Thais Cerqueira Reis
    Pulido-Diaz, Katya
    Lopes, Marcio Ajudarte
    Santos-Silva, Alan Roger
    Kowalski, Luiz Paulo
    Moraes, Matheus Cardoso
    Vargas, Pablo Agustin
    HEAD & NECK PATHOLOGY, 2024, 18 (01):
  • [8] Improving automated latent fingerprint detection and segmentation using deep convolutional neural network
    Chhabra, Megha
    Ravulakollu, Kiran Kumar
    Kumar, Manoj
    Sharma, Abhay
    Nayyar, Anand
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (09): : 6471 - 6497
  • [9] Improving automated latent fingerprint detection and segmentation using deep convolutional neural network
    Megha Chhabra
    Kiran Kumar Ravulakollu
    Manoj Kumar
    Abhay Sharma
    Anand Nayyar
    Neural Computing and Applications, 2023, 35 : 6471 - 6497
  • [10] PATCH-BASED FULLY CONVOLUTIONAL NEURAL NETWORK WITH SKIP CONNECTIONS FOR RETINAL BLOOD VESSEL SEGMENTATION
    Feng, Zhongwei
    Yang, Jie
    Yao, Lixiu
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 1742 - 1746