ASYMPTOTIC PROFILES OF BASIC REPRODUCTION NUMBER FOR EPIDEMIC SPREADING IN HETEROGENEOUS ENVIRONMENT

被引:27
作者
Chen, Shanshan [1 ]
Shi, Junping [2 ]
机构
[1] Harbin Inst Technol, Dept Math, Weihai 264209, Shandong, Peoples R China
[2] William & Mary, Dept Math, Williamsburg, VA 23187 USA
关键词
basic reproduction number; reaction-diffusion; heterogeneous environment; compartmental epidemic models; REACTION-DIFFUSION MODEL; POSITIVE STEADY-STATE; GLOBAL DYNAMICS; DISEASE; RISK;
D O I
10.1137/19M1289078
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The effect of diffusion rates on the basic reproduction number of a general compartmental reaction-diffusion epidemic model in a heterogeneous environment is considered. It is shown that when the diffusion rates tend to zero, the limit of the basic reproduction number is the maximum value of the local reproduction number on the spatial domain. On the other hand, when the diffusion rates tend to infinity, the basic reproduction number tends to the spectral radius of the "average" next generation matrix. These asymptotic limits of basic reproduction number hold for a class of general spatially heterogeneous compartmental epidemic models, and they are applied to a wide variety of examples.
引用
收藏
页码:1247 / 1271
页数:25
相关论文
共 49 条
[11]   Dynamics of a susceptible-infected-susceptible epidemic reaction-diffusion model [J].
Deng, Keng ;
Wu, Yixiang .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2016, 146 (05) :929-946
[12]  
DIEKMANN O, 1990, J MATH BIOL, V28, P365
[13]  
Driessche P. V. D., 2003, Mathematical Population Studies, V10, P175, DOI [1998945, DOI 10.1080/08898480306720, 10.1080/08898480306720]
[14]   Competitive exclusion in a vector-host model for the Dengue fever [J].
Feng, ZL ;
VelascoHernandez, JX .
JOURNAL OF MATHEMATICAL BIOLOGY, 1997, 35 (05) :523-544
[15]   An outbreak vector-host epidemic model with spatial structure: the 2015-2016 Zika outbreak in Rio De Janeiro [J].
Fitzgibbon, W. E. ;
Morgan, J. J. ;
Webb, G. F. .
THEORETICAL BIOLOGY AND MEDICAL MODELLING, 2017, 14
[16]   A SIS reaction-diffusion-advection model in a low-risk and high-risk domain [J].
Ge, Jing ;
Kim, Kwang Ik ;
Lin, Zhigui ;
Zhu, Huaiping .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (10) :5486-5509
[17]   Global dynamics of a staged progression model for infectious diseases [J].
Guo, Hongbin ;
Li, Michael Y. .
MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2006, 3 (03) :513-525
[18]   R0 Analysis of a Benthic-Drift Model for a Stream Population [J].
Huang, Qihua ;
Jin, Yu ;
Lewis, Mark A. .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2016, 15 (01) :287-321
[19]   The differential infectivity and staged progression models for the transmission of HIV [J].
Hyman, JM ;
Li, J ;
Stanley, EA .
MATHEMATICAL BIOSCIENCES, 1999, 155 (02) :77-109
[20]  
Kato, 1976, PERTURBATION THEORY