Differential expression pattern-based prioritization of candidate genes through integrating disease-specific expression data

被引:13
|
作者
Xiao, Yun [1 ]
Xu, Chaohan [1 ]
Ping, Yanyan [1 ]
Guan, Jinxia [1 ]
Fan, Huihui [1 ]
Li, Yiqun [1 ]
Li, Xia [1 ,2 ]
机构
[1] Harbin Med Coll, Coll Bioinformat Sci & Technol, Harbin 150081, Heilongjiang, Peoples R China
[2] Capital Univ Med Sci, Dept Bioinformat, Beijing 100084, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Prioritization; Differential expression pattern; Complex disease; Integration; FUNCTIONAL ANNOTATION; BREAST-CANCER; IDENTIFICATION; NETWORK; SIMILARITY; DISORDERS; SEQUENCE; LINKAGE; TOOL; INTERACTOME;
D O I
10.1016/j.ygeno.2011.04.001
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Expression data can reveal subtle transcriptional changes that mediate the clinical phenotype of the disease resulting from interaction between genetic and environmental factors, which offers us a new perspective to prioritize candidate genes. Here, we proposed a novel differential expression pattern (DEP)-based approach integrating numerous disease-specific expression data sets for prioritizing candidate genes. Using breast cancer as a case study, we validated the efficiency of our approach through integrating 12 breast cancerrelated expression data sets based on the leave-one-out cross-validation. Particularly, prioritization based on subtype-specific expression data sets could generate significantly higher performance. The performance could be continually improved with the increasing expression data sets regardless of platform heterogeneity. We further validated the robustness of this approach by application to prostate cancer. Additionally, our approach showed higher performance in comparison with other expression-based approaches and better capability of identification of less well-studied disease genes in comparison with other integration-based approaches. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:64 / 71
页数:8
相关论文
共 50 条
  • [1] Prioritization of differentially expressed genes through integrating public expression data
    Xu, W.
    Li, S.
    Zhang, Z.
    Hu, J.
    Zhao, Y.
    ANIMAL GENETICS, 2019, 50 (06) : 726 - 732
  • [2] GeneTIER: prioritization of candidate disease genes using tissue-specific gene expression profiles
    Antanaviciute, Agne
    Daly, Catherine
    Crinnion, Laura A.
    Markham, Alexander F.
    Watson, Christopher M.
    Bonthron, David T.
    Carr, Ian M.
    BIOINFORMATICS, 2015, 31 (16) : 2728 - 2735
  • [3] Pattern-Based Biclustering with Constraints for Gene Expression Data Analysis
    Henriques, Rui
    Madeira, Sara C.
    PROGRESS IN ARTIFICIAL INTELLIGENCE-BK, 2015, 9273 : 326 - 339
  • [4] Configurable pattern-based evolutionary biclustering of gene expression data
    Pontes, Beatriz
    Giraldez, Raul
    Aguilar-Ruiz, Jesus S.
    ALGORITHMS FOR MOLECULAR BIOLOGY, 2013, 8
  • [5] Configurable pattern-based evolutionary biclustering of gene expression data
    Beatriz Pontes
    Raúl Giráldez
    Jesús S Aguilar-Ruiz
    Algorithms for Molecular Biology, 8
  • [6] Differential expression profile prioritization of positional candidate glaucoma genes -: The GLC1C locus
    Rozsa, Frank W.
    Scott, Kathleen M.
    Pawar, Hemant
    Samples, John R.
    Wirtz, Mary K.
    Richards, Julia E.
    ARCHIVES OF OPHTHALMOLOGY, 2007, 125 (01) : 117 - 127
  • [7] Disease-Specific Expression of Host Genes During Downy Mildew Infection of Arabidopsis
    Huibers, Robin P.
    de Jong, Mark
    Dekter, Rene W.
    Van den Ackerveken, Guido
    MOLECULAR PLANT-MICROBE INTERACTIONS, 2009, 22 (09) : 1104 - 1115
  • [8] Prioritization of candidate disease genes by enlarging the seed set and fusing information of the network topology and gene expression
    Zhang, Shao-Wu
    Shao, Dong-Dong
    Zhang, Song-Yao
    Wang, Yi-Bin
    MOLECULAR BIOSYSTEMS, 2014, 10 (06) : 1400 - 1408
  • [9] Identification of Candidate Parkinson Disease Genes by Integrating Genome-Wide Association Study, Expression, and Epigenetic Data Sets
    Kia, Demis A.
    Zhang, David
    Guelfi, Sebastian
    Manzoni, Claudia
    Hubbard, Leon
    Reynolds, Regina H.
    Botia, Juan
    Ryten, Mina
    Ferrari, Raffaele
    Lewis, Patrick A.
    Williams, Nigel
    Trabzuni, Daniah
    Hardy, John
    Wood, Nicholas W.
    JAMA NEUROLOGY, 2021, 78 (04) : 464 - 472
  • [10] Identification of disease-specific genes in T1D through genetics of gene expression in regulatory T cells
    Jailwala, P.
    Waukau, J.
    Glisic-Milosavljevic, S.
    Ehlenbach, S.
    Jana, S.
    Koppen, M.
    Kramer, J.
    Hessner, M.
    Klinker, M.
    Basken, J.
    Schiller, J.
    Luczkowski, E.
    Ghosh, S.
    ACTA DIABETOLOGICA, 2007, 44 : S25 - S26