On the approximation order of splines on spherical triangulations

被引:29
作者
Neamtu, M [1 ]
Schumaker, LL [1 ]
机构
[1] Vanderbilt Univ, Dept Math, Ctr Construct Approximat, Nashville, TN 37240 USA
关键词
spherical splines; piecewise polynomial functions; spherical triangulation; Sobolev space; seminorm; approximation order;
D O I
10.1023/B:ACOM.0000016430.93487.ec
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Bounds are provided on how well functions in Sobolev spaces on the sphere can be approximated by spherical splines, where a spherical spline of degree d is a C-r function whose pieces are the restrictions of homogeneous polynomials of degree d to the sphere. The bounds are expressed in terms of appropriate seminorms defined with the help of radial projection, and are obtained using appropriate quasi-interpolation operators.
引用
收藏
页码:3 / 20
页数:18
相关论文
共 16 条
[1]  
Adams R., 1975, Sobolev space
[2]  
Alfeld P, 1996, COMPUT AIDED GEOM D, V13, P333, DOI 10.1016/0167-8396(95)00030-5
[3]   Dimension and local bases of homogeneous spline spaces [J].
Alfeld, P ;
Neamtu, M ;
Schumaker, LL .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1996, 27 (05) :1482-1501
[4]   Fitting scattered data on sphere-like surfaces using spherical splines [J].
Alfeld, P ;
Neamtu, M ;
Schumaker, LL .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 73 (1-2) :5-43
[5]  
Aubin Thierry, 1982, GRUNDLEHREN MATH WIS, V252
[6]  
Brenner S. C., 2007, Texts Appl. Math., V15
[7]   STABILITY OF OPTIMAL-ORDER APPROXIMATION BY BIVARIATE SPLINES OVER ARBITRARY TRIANGULATIONS [J].
CHUI, CK ;
HONG, D ;
JIA, RQ .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 347 (09) :3301-3318
[8]  
CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems
[9]  
Davydov O, 2002, CONSTR APPROX, V18, P87
[10]  
FREEDWN W, 1998, CONSTRUCTIVE APPROXI