Gut microbiome-based supervised machine learning for clinical diagnosis of inflammatory bowel diseases

被引:58
作者
Manandhar, Ishan [1 ]
Alimadadi, Ahmad [1 ]
Aryal, Sachin [1 ]
Munroe, Patricia B. [2 ,3 ]
Joe, Bina [1 ]
Cheng, Xi [1 ]
机构
[1] Univ Toledo, Coll Med & Life Sci, Ctr Hypertens & Precis Med,Dept Physiol & Pharmac, Bioinformat & Artificial Intelligence Lab,Program, Toledo, OH 43606 USA
[2] Queen Mary Univ London, William Harvey Res Inst, Clin Pharmacol, London, England
[3] Queen Mary Univ London, Barts & London Sch Med & Dent, Natl Inst Hlth Res Barts, Cardiovasc Biomed Res Ctr, London, England
来源
AMERICAN JOURNAL OF PHYSIOLOGY-GASTROINTESTINAL AND LIVER PHYSIOLOGY | 2021年 / 320卷 / 03期
关键词
Crohn's disease; gut microbiome; inflammatory bowel disease; machine learning; ulcerative colitis; FECAL MICROBIOTA; CROHNS-DISEASE; BACTERIA; IBD; PATHOGENESIS;
D O I
10.1152/ajpgi.00360.2020
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Despite the availability of various diagnostic tests for inflammatory bowel diseases (IBD), misdiagnosis of IBD occurs frequently, and thus, there is a clinical need to further improve the diagnosis of IBD. As gut dysbiosis is reported in patients with IBD, we hypothesized that supervised machine learning (ML) could be used to analyze gut microbiome data for predictive diagnostics of IBD. To test our hypothesis, fecal 16S metagenomic data of 729 subjects with IBD and 700 subjects without IBD from the American Gut Project were analyzed using five different ML algorithms. Fifty differential bacterial taxa were identified [linear discriminant analysis effect size (LEfSe): linear discriminant analysis (LDA) score > 3) between the IBD and non-IBD groups, and ML classifications trained with these taxonomic features using random forest (RF) achieved a testing area under the receiver operating characteristic curves (AUC) of similar to 0.80. Next, we tested if operational taxonomic units (OTUs), instead of bacterial taxa, could be used as ML features for diagnostic classification of IBD. Top 500 high-variance OTUs were used for ML training, and an improved testing AUC of similar to 0.82 (RF) was achieved. Lastly, we tested if supervised ML could be used for differentiating Crohn's disease (CD) and ulcerative colitis (UC). Using 331 CD and 141 UC samples, 117 differential bacterial taxa (LEfSe: LDA score > 3) were identified, and the RF model trained with differential taxonomic features or high-variance OTU features achieved a testing AUC > 0.90. In summary, our study demonstrates the promising potential of artificial intelligence via supervised ML modeling for predictive diagnostics of IBD using gut microbiome data. NEW & NOTEWORTHY Our study demonstrates the promising potential of artificial intelligence via supervised machine learning modeling for predictive diagnostics of different types of inflammatory bowel diseases using fecal gut microbiome data.
引用
收藏
页码:G328 / G337
页数:10
相关论文
共 65 条
[1]   Microbial imbalance in inflammatory bowel disease patients at different taxonomic levels [J].
Alam, Mohammad Tauqeer ;
Amos, Gregory C. A. ;
Murphy, Andrew R. J. ;
Murch, Simon ;
Wellington, Elizabeth M. H. ;
Arasaradnam, Ramesh P. .
GUT PATHOGENS, 2020, 12 (01)
[2]   Temporal Bacterial Community Dynamics Vary Among Ulcerative Colitis Patients After Fecal Microbiota Transplantation [J].
Angelberger, Sieglinde ;
Reinisch, Walter ;
Makristathis, Athanasios ;
Lichtenberger, Cornelia ;
Dejaco, Clemens ;
Papay, Pavol ;
Novacek, Gottfried ;
Trauner, Michael ;
Loy, Alexander ;
Erry, David B. .
AMERICAN JOURNAL OF GASTROENTEROLOGY, 2013, 108 (10) :1620-1630
[3]  
[Anonymous], 2007, J PEDIATR GASTR NUTR, V44, P653
[4]   Crohn's disease [J].
Baumgart, Daniel C. ;
Sandborn, William J. .
LANCET, 2012, 380 (9853) :1590-1605
[5]   Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2 [J].
Bolyen, Evan ;
Rideout, Jai Ram ;
Dillon, Matthew R. ;
Bokulich, NicholasA. ;
Abnet, Christian C. ;
Al-Ghalith, Gabriel A. ;
Alexander, Harriet ;
Alm, Eric J. ;
Arumugam, Manimozhiyan ;
Asnicar, Francesco ;
Bai, Yang ;
Bisanz, Jordan E. ;
Bittinger, Kyle ;
Brejnrod, Asker ;
Brislawn, Colin J. ;
Brown, C. Titus ;
Callahan, Benjamin J. ;
Caraballo-Rodriguez, Andres Mauricio ;
Chase, John ;
Cope, Emily K. ;
Da Silva, Ricardo ;
Diener, Christian ;
Dorrestein, Pieter C. ;
Douglas, Gavin M. ;
Durall, Daniel M. ;
Duvallet, Claire ;
Edwardson, Christian F. ;
Ernst, Madeleine ;
Estaki, Mehrbod ;
Fouquier, Jennifer ;
Gauglitz, Julia M. ;
Gibbons, Sean M. ;
Gibson, Deanna L. ;
Gonzalez, Antonio ;
Gorlick, Kestrel ;
Guo, Jiarong ;
Hillmann, Benjamin ;
Holmes, Susan ;
Holste, Hannes ;
Huttenhower, Curtis ;
Huttley, Gavin A. ;
Janssen, Stefan ;
Jarmusch, Alan K. ;
Jiang, Lingjing ;
Kaehler, Benjamin D. ;
Bin Kang, Kyo ;
Keefe, Christopher R. ;
Keim, Paul ;
Kelley, Scott T. ;
Knights, Dan .
NATURE BIOTECHNOLOGY, 2019, 37 (08) :852-857
[6]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[7]   Are IBD patients more likely to have a prior diagnosis of irritable bowel syndrome? Report of a case-control study in the General Practice Research Database [J].
Card, Timothy R. ;
Siffledeen, Jesse ;
Fleming, Kate M. .
UNITED EUROPEAN GASTROENTEROLOGY JOURNAL, 2014, 2 (06) :505-512
[8]   Multi-omics differentially classify disease state and treatment outcome in pediatric Crohn's disease [J].
Douglas, Gavin M. ;
Hansen, Richard ;
Jones, Casey M. A. ;
Dunn, Katherine A. ;
Comeau, Andre M. ;
Bielawski, Joseph P. ;
Tayler, Rachel ;
El-Omar, Emad M. ;
Russell, Richard K. ;
Hold, Georgina L. ;
Langille, Morgan G. I. ;
Van Limbergen, Johan .
MICROBIOME, 2018, 6
[9]   A comparative study of the gut microbiota in immune-mediated inflammatory diseasesdoes a common dysbiosis exist? [J].
Forbes, Jessica D. ;
Chen, Chih-yu ;
Knox, Natalie C. ;
Marrie, Ruth-Ann ;
El-Gabalawy, Hani ;
de Kievit, Teresa ;
Alfa, Michelle ;
Bernstein, Charles N. ;
Van Domselaar, Gary .
MICROBIOME, 2018, 6
[10]   Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases [J].
Frank, Daniel N. ;
Amand, Allison L. St. ;
Feldman, Robert A. ;
Boedeker, Edgar C. ;
Harpaz, Noam ;
Pace, Norman R. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (34) :13780-13785