Invariant ideals of abelian group algebras under the torus action of a field, II

被引:2
作者
Passman, D. S. [1 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
关键词
Group algebra; Group action; Torus action; Invariant ideal; MULTIPLICATIVE ACTION;
D O I
10.1016/j.jalgebra.2011.01.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let V = V(1) circle plus V(2) be a finite-dimensional vector space over an infinite locally-finite field F. Then V admits the torus action of G = F degrees by defining (v(1) circle plus v(2))(g) = v(1)g(-1) circle plus v(2)g. If K is a field of characteristic different from that of F, then G acts on the group algebra K[V] and it is an interesting problem to determine all G-stable ideals of this algebra. In this paper, we show that, for almost all fields F. the G-stable ideals are uniquely writable as finite irredundant intersections of augmentation ideals of subspaces W(1) circle plus W(2), with W(1) subset of V(1) and W(2) subset of V(2). As a consequence, the set of all G-stable ideals is Noetherian. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:362 / 377
页数:16
相关论文
共 6 条
[1]   Augmentation modules for affine groups [J].
Brookes, CJB ;
Evans, DM .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2001, 130 :287-294
[2]   Invariant ideals of abelian group algebras under the multiplicative action of a field. II [J].
Osterburg, JM ;
Passman, DS ;
Zalesskii, AE .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (04) :951-957
[3]   Invariant ideals of abelian group algebras under the torus action of a field, I [J].
Passman, D. S. .
JOURNAL OF ALGEBRA, 2010, 324 (11) :3035-3043
[4]  
Passman D. S., 2002, RESENHAS IME USP, V5, P377
[5]  
Passman D. S., 1977, Pure and Applied Mathe- matics
[6]   Invariant ideals of abelian group algebras under the multiplicative action of a field. I [J].
Passman, DS ;
Zalesskii, AE .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (04) :939-949