Adaptive Stabilization for a Class of Fractional-Order Systems with Nonlinear Uncertainty

被引:12
作者
Jmal, A. [1 ]
Naifar, O. [1 ]
Ben Makhlouf, A. [2 ]
Derbel, N. [1 ]
Hammami, M. A. [3 ]
机构
[1] Sfax Univ, CEM Lab, Electr Engn Dept, Engn Natl Sch, BP 1173, Sfax 3038, Sfax, Tunisia
[2] Jouf Univ, Coll Sci, Dept Math, Aljouf, Saudi Arabia
[3] Sfax Univ, Fac Sci Sfax, Dept Math, BP 1171, Sfax 3000, Sfax, Tunisia
关键词
Fractional-order systems; Adaptive stabilization; Observer; Nonlinear uncertainty; SENSOR FAULT ESTIMATION; PREDICTIVE CONTROL; STABILITY;
D O I
10.1007/s13369-019-04148-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The stabilization task for uncertain integer-order systems has been widely and extensively investigated in the literature. However, stabilizing uncertain fractional-order systems (despite the recent great interest given by researchers to this research axis) is still considered as a fertile area of research. In this paper, an original adaptive scheme to handle this particular problem, under the nonlinear uncertainty modeling, is suggested. The approach consists of estimating the upper bound of uncertainties and designing an adaptive output feedback controller, using the Lyapunov direct method. The concept of uniform practical Mittag-Leffler stability is used throughout the paper. The feasibility and effectiveness of the theoretical results are shown through simulations via two numerical examples.
引用
收藏
页码:2195 / 2203
页数:9
相关论文
共 35 条
[11]   Stabilization of fractional-order singular uncertain systems [J].
Ji, Yude ;
Qiu, Jiqing .
ISA TRANSACTIONS, 2015, 56 :53-64
[12]  
Jmal A., 2018, Int. J. Digital Sig. Smart Syst, V2, P136
[13]   State estimation for nonlinear conformable fractional-order systems: A healthy operating case and a faulty operating case [J].
Jmal, Assaad ;
Elloumi, Mourad ;
Naifar, Omar ;
Ben Makhlouf, Abdellatif ;
Hammami, Mohamed Ali .
ASIAN JOURNAL OF CONTROL, 2020, 22 (05) :1870-1879
[14]   Sensor fault estimation for fractional-order descriptor one-sided Lipschitz systems [J].
Jmal, Assaad ;
Naifar, Omar ;
Ben Makhlouf, Abdellatif ;
Derbel, Nabil ;
Hammami, Mohamed Ali .
NONLINEAR DYNAMICS, 2018, 91 (03) :1713-1722
[15]   Robust sensor fault estimation for fractional-order systems with monotone nonlinearities [J].
Jmal, Assaad ;
Naifar, Omar ;
Ben Makhlouf, Abdellatif ;
Derbel, Nabil ;
Hammami, Mohamed Ali .
NONLINEAR DYNAMICS, 2017, 90 (04) :2673-2685
[16]  
Kato T, 2018, INT J HYDROMECHATRON, V1, P384
[17]  
Kilbas A. A., 2006, Theory and applications of fractional differential equations, V204, DOI DOI 10.1016/S0304-0208(06)80001-0
[18]   Observer-based robust control of a (1 ≤ a < 2) fractional-order uncertain systems: a linear matrix inequality approach [J].
Lan, Y. -H. ;
Huang, H. -X. ;
Zhou, Y. .
IET CONTROL THEORY AND APPLICATIONS, 2012, 6 (02) :229-234
[19]   Fractional market dynamics [J].
Laskin, N .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2000, 287 (3-4) :482-492
[20]  
LI P, 2009, J CONTROL THEORY APP, V7, P248