Adaptive Stabilization for a Class of Fractional-Order Systems with Nonlinear Uncertainty

被引:12
作者
Jmal, A. [1 ]
Naifar, O. [1 ]
Ben Makhlouf, A. [2 ]
Derbel, N. [1 ]
Hammami, M. A. [3 ]
机构
[1] Sfax Univ, CEM Lab, Electr Engn Dept, Engn Natl Sch, BP 1173, Sfax 3038, Sfax, Tunisia
[2] Jouf Univ, Coll Sci, Dept Math, Aljouf, Saudi Arabia
[3] Sfax Univ, Fac Sci Sfax, Dept Math, BP 1171, Sfax 3000, Sfax, Tunisia
关键词
Fractional-order systems; Adaptive stabilization; Observer; Nonlinear uncertainty; SENSOR FAULT ESTIMATION; PREDICTIVE CONTROL; STABILITY;
D O I
10.1007/s13369-019-04148-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The stabilization task for uncertain integer-order systems has been widely and extensively investigated in the literature. However, stabilizing uncertain fractional-order systems (despite the recent great interest given by researchers to this research axis) is still considered as a fertile area of research. In this paper, an original adaptive scheme to handle this particular problem, under the nonlinear uncertainty modeling, is suggested. The approach consists of estimating the upper bound of uncertainties and designing an adaptive output feedback controller, using the Lyapunov direct method. The concept of uniform practical Mittag-Leffler stability is used throughout the paper. The feasibility and effectiveness of the theoretical results are shown through simulations via two numerical examples.
引用
收藏
页码:2195 / 2203
页数:9
相关论文
共 35 条
[1]   A priori estimates for solutions of boundary value problems for fractional-order equations [J].
Alikhanov, A. A. .
DIFFERENTIAL EQUATIONS, 2010, 46 (05) :660-666
[2]   Observer-based adaptive stabilization of a class of uncertain nonlinear systems [J].
Arefi, Mohammad M. ;
Zarei, Jafar ;
Karimi, Hamid R. .
SYSTEMS SCIENCE & CONTROL ENGINEERING, 2014, 2 (01) :362-367
[3]   STABILITY OF FRACTIONAL-ORDER NONLINEAR SYSTEMS DEPENDING ON A PARAMETER [J].
Ben Makhlouf, Abdellatif ;
Hammami, Mohamed Ali ;
Sioud, Khaled .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2017, 54 (04) :1309-1321
[4]   Airborne particulate matter from livestock production systems: A review of an air pollution problem [J].
Cambra-Lopez, Maria ;
Aarnink, Andre J. A. ;
Zhao, Yang ;
Calvet, Salvador ;
Torres, Antonio G. .
ENVIRONMENTAL POLLUTION, 2010, 158 (01) :1-17
[5]   Stability for Caputo Fractional Differential Systems [J].
Choi, Sung Kyu ;
Kang, Bowon ;
Koo, Namjip .
ABSTRACT AND APPLIED ANALYSIS, 2014,
[6]  
Dadras S., 2011, P ASME 2011 INT DES
[7]   Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems [J].
Duarte-Mermoud, Manuel A. ;
Aguila-Camacho, Norelys ;
Gallegos, Javier A. ;
Castro-Linares, Rafael .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 22 (1-3) :650-659
[8]   On fractional calculus and fractional multipoles in electromagnetism [J].
Engheta, N .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1996, 44 (04) :554-566
[9]   Design of fuzzy state feedback controller for robust stabilization of uncertain fractional-order chaotic systems [J].
Huang, Xia ;
Wang, Zhen ;
Li, Yuxia ;
Lu, Junwei .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2014, 351 (12) :5480-5493
[10]  
Jenkins RP, 2018, INT J HYDROMECHATRON, V1, P361