The role of non-standard translation in Candida albicans pathogenesis

被引:4
作者
Bezerra, Ana Rita [1 ]
Oliveira, Carla [1 ]
Correia, Ines [1 ]
Guimaraes, Ana Rita [1 ]
Sousa, Goncalo [1 ]
Carvalho, Maria Joao [1 ]
Moura, Gabriela [1 ]
Santos, Manuel A. S. [1 ]
机构
[1] Univ Aveiro, Inst Biomed iBiMED, Dept Med Sci, P-3810193 Aveiro, Portugal
关键词
Candida albicans; non-standard translation; pathogenesis; drug resistance; genetic diversity; evolution; GENETIC-CODE ALTERATION; CUG CODON; MULTIDRUG-RESISTANCE; EVOLUTION; MISTRANSLATION; REASSIGNMENT; GENOMICS; ORIGIN; HETEROZYGOSITY; FLUCONAZOLE;
D O I
10.1093/femsyr/foab032
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Candida albicans typically resides in the human gastrointestinal tract and mucosal membranes as a commensal organism. To adapt and cope with the host immune system, it has evolved a variety of mechanisms of adaptation such as stress-induced mutagenesis and epigenetic regulation. Niche-specific patterns of gene expression also allow the fungus to fine-tune its response to specific microenvironments in the host and switch from harmless commensal to invasive pathogen. Proteome plasticity produced by CUG ambiguity, on the other hand is emerging as a new layer of complexity in C. albicans adaptation, pathogenesis, and drug resistance. Such proteome plasticity is the result of a genetic code alteration where the leucine CUG codon is translated mainly as serine (97%), but maintains some level of leucine (3%) assignment. In this review, we dissect the link between C. albicans non-standard CUG translation, proteome plasticity, host adaptation and pathogenesis. We discuss published work showing how this pathogen uses the fidelity of protein synthesis to spawn novel virulence traits.
引用
收藏
页数:8
相关论文
共 72 条
[1]   Spontaneous mutagenesis is elevated in protease-defective cells [J].
Amar, Abu ;
Al Mamun, M. ;
Humayun, M. Zafri .
MOLECULAR MICROBIOLOGY, 2009, 71 (03) :629-639
[2]   Mistranslation induced by streptomycin provokes a RecABC/RuvABC-dependent mutator phenotype in Escherichia coli cells [J].
Balashov, S ;
Humayun, MZ .
JOURNAL OF MOLECULAR BIOLOGY, 2002, 315 (04) :513-527
[3]   Reversion of a fungal genetic code alteration links proteome instability with genomic and phenotypic diversification [J].
Bezerra, Ana R. ;
Simoes, Joao ;
Lee, Wanseon ;
Rung, Johan ;
Weil, Tobias ;
Gut, Ivo G. ;
Gut, Marta ;
Bayes, Monica ;
Rizzetto, Lisa ;
Cavalieri, Duccio ;
Giovannini, Gloria ;
Bozza, Silvia ;
Romani, Luigina ;
Kapushesky, Misha ;
Moura, Gabriela R. ;
Santos, Manuel A. S. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (27) :11079-11084
[4]   CODON UTILIZATION IN THE PATHOGENIC YEAST, CANDIDA-ALBICANS [J].
BROWN, AJP ;
BERTRAM, G ;
FELDMANN, PJF ;
PEGGIE, MW ;
SWOBODA, RK .
NUCLEIC ACIDS RESEARCH, 1991, 19 (15) :4298-4298
[5]   Evolution of pathogenicity and sexual reproduction in eight Candida genomes [J].
Butler, Geraldine ;
Rasmussen, Matthew D. ;
Lin, Michael F. ;
Santos, Manuel A. S. ;
Sakthikumar, Sharadha ;
Munro, Carol A. ;
Rheinbay, Esther ;
Grabherr, Manfred ;
Forche, Anja ;
Reedy, Jennifer L. ;
Agrafioti, Ino ;
Arnaud, Martha B. ;
Bates, Steven ;
Brown, Alistair J. P. ;
Brunke, Sascha ;
Costanzo, Maria C. ;
Fitzpatrick, David A. ;
de Groot, Piet W. J. ;
Harris, David ;
Hoyer, Lois L. ;
Hube, Bernhard ;
Klis, Frans M. ;
Kodira, Chinnappa ;
Lennard, Nicola ;
Logue, Mary E. ;
Martin, Ronny ;
Neiman, Aaron M. ;
Nikolaou, Elissavet ;
Quail, Michael A. ;
Quinn, Janet ;
Santos, Maria C. ;
Schmitzberger, Florian F. ;
Sherlock, Gavin ;
Shah, Prachi ;
Silverstein, Kevin A. T. ;
Skrzypek, Marek S. ;
Soll, David ;
Staggs, Rodney ;
Stansfield, Ian ;
Stumpf, Michael P. H. ;
Sudbery, Peter E. ;
Srikantha, Thyagarajan ;
Zeng, Qiandong ;
Berman, Judith ;
Berriman, Matthew ;
Heitman, Joseph ;
Gow, Neil A. R. ;
Lorenz, Michael C. ;
Birren, Bruce W. ;
Kellis, Manolis .
NATURE, 2009, 459 (7247) :657-662
[6]   Selenoproteins regulate macrophage invasiveness and extracellular matrix-related gene expression [J].
Carlson, Bradley A. ;
Yoo, Min-Hyuk ;
Sano, Yasuyo ;
Sengupta, Aniruddha ;
Kim, Jin Young ;
Irons, Robert ;
Gladyshev, Vadim N. ;
Hatfield, Dolph L. ;
Park, Jin Mo .
BMC IMMUNOLOGY, 2009, 10 :57
[7]  
Castanheira M, 2017, ANTIMICROB AGENTS CH, V61, DOI [10.1128/AAC.00906-17, 10.1128/aac.00906-17]
[8]  
CDC, 2019, Antibiotic Resistance Threats in the United States, 2013
[9]   Epigenetic mechanisms of drug resistance in fungi [J].
Chang, Zanetta ;
Yadav, Vikas ;
Lee, Soo Chan ;
Heitman, Joseph .
FUNGAL GENETICS AND BIOLOGY, 2019, 132
[10]   A mutation in Tac1p, a transcription factor regulating CDR1 and CDR2, is coupled with loss of heterozygosity at chromosome 5 to mediate antifungal resistance in Candida albicans [J].
Coste, A ;
Turner, V ;
Ischer, F ;
Morschhäuser, J ;
Forche, A ;
Selmecki, A ;
Berman, J ;
Bille, J ;
Sanglard, D .
GENETICS, 2006, 172 (04) :2139-2156