Zero-shot Event Extraction via Transfer Learning: Challenges and Insights

被引:0
|
作者
Lyu, Qing [1 ]
Zhang, Hongming [2 ,3 ]
Sulem, Elior [1 ]
Roth, Dan [1 ]
机构
[1] Univ Penn, Dept Comp & Informat Sci, Philadelphia, PA 19104 USA
[2] HKUST, Dept Comp Sci & Engn, Hong Kong, Peoples R China
[3] Univ Penn, Philadelphia, PA 19104 USA
来源
ACL-IJCNLP 2021: THE 59TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 11TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING, VOL 2 | 2021年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Event extraction has long been a challenging task, addressed mostly with supervised methods that require expensive annotation and are not extensible to new event ontologies. In this work, we explore the possibility of zeroshot event extraction by formulating it as a set of Textual Entailment (TE) and/or Question Answering (QA) queries (e.g. "A city was attacked" entails "There is an attack"), exploiting pretrained TE/QA models for direct transfer. On ACE-2005 and ERE, our system achieves acceptable results, yet there is still a large gap from supervised approaches, showing that current QA and TE technologies fail in transferring to a different domain. To investigate the reasons behind the gap, we analyze the remaining key challenges, their respective impact, and possible improvement directions(1).
引用
收藏
页码:322 / 332
页数:11
相关论文
共 50 条
  • [31] Model-Agnostic Zero-Shot Intent Detection via Contrastive Transfer Learning
    Maqbool, M. H.
    Fereidouni, Moghis
    Siddique, A. B.
    Foroosh, Hassan
    INTERNATIONAL JOURNAL OF SEMANTIC COMPUTING, 2024, 18 (01) : 5 - 24
  • [32] Improving Zero-Shot Cross-Lingual Transfer Learning via Robust Training
    Huang, Kuan-Hao
    Ahmad, Wasi Uddin
    Peng, Nanyun
    Chang, Kai-Wei
    2021 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2021), 2021, : 1684 - 1697
  • [33] Graph and Autoencoder Based Feature Extraction for Zero-shot Learning
    Liu, Yang
    Xie, Deyan
    Gao, Quanxue
    Han, Jungong
    Wang, Shujian
    Gao, Xinbo
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 3038 - 3044
  • [34] Ordinal Zero-Shot Learning
    Huo, Zengwei
    Geng, Xin
    PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 1916 - 1922
  • [35] Zero-Shot Kernel Learning
    Zhang, Hongguang
    Koniusz, Piotr
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 7670 - 7679
  • [36] Zero-shot causal learning
    Nilforoshan, Hamed
    Moor, Michael
    Roohani, Yusuf
    Chen, Yining
    Surina, Anja
    Yasunaga, Michihiro
    Oblak, Sara
    Leskovec, Jure
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [37] Zero-shot Metric Learning
    Xu, Xinyi
    Cao, Huanhuan
    Yang, Yanhua
    Yang, Erkun
    Deng, Cheng
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 3996 - 4002
  • [38] Active Zero-Shot Learning
    Xie, Sihong
    Wang, Shaoxiong
    Yu, Philip S.
    CIKM'16: PROCEEDINGS OF THE 2016 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2016, : 1889 - 1892
  • [39] Spherical Zero-Shot Learning
    Shen, Jiayi
    Xiao, Zehao
    Zhen, Xiantong
    Zhang, Lei
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (02) : 634 - 645
  • [40] Rebalanced Zero-Shot Learning
    Ye, Zihan
    Yang, Guanyu
    Jin, Xiaobo
    Liu, Youfa
    Huang, Kaizhu
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 4185 - 4198