Conformational choreography of a molecular switch region in myelin basic protein-Molecular dynamics shows induced folding and secondary structure type conversion upon threonyl phosphorylation in both aqueous and membrane-associated environments

被引:28
|
作者
Polverini, Eugenia [2 ]
Coll, Eoin P. [3 ]
Tieleman, D. Peter [3 ]
Harauz, George [1 ]
机构
[1] Univ Guelph, Dept Mol & Cellular Biol, Guelph, ON N1G 2W1, Canada
[2] Univ Parma, Dipartimento Fis, I-43100 Parma, Italy
[3] Univ Calgary, Dept Biol Sci, Calgary, AB T2N 1N4, Canada
来源
基金
加拿大自然科学与工程研究理事会; 加拿大健康研究院;
关键词
Molecular dynamics; Myelin basic protein; Phosphorylation; PPII structure; Intrinsically disordered protein; INTRINSICALLY UNSTRUCTURED PROTEIN; STATE NMR-SPECTROSCOPY; POLYPROLINE-II HELIX; 18.5 KDA ISOFORM; IMMUNODOMINANT EPITOPE; MULTIPLE-SCLEROSIS; CHARGE ISOMERS; POSTTRANSLATIONAL MODIFICATIONS; 3-DIMENSIONAL STRUCTURE; SURFACE-CHARGE;
D O I
10.1016/j.bbamem.2010.11.030
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The 18.5 kDa isoform of myelin basic protein is essential to maintaining the close apposition of myelin membranes in central nervous system myelin, but its intrinsic disorder (conformational dependence on environment), a variety of post-translational modifications, and a diversity of protein ligands (e.g., actin and tubulin) all indicate it to be multifunctional. We have performed molecular dynamics simulations of a conserved central segment of 18.5 kDa myelin basic protein (residues Glu80-Gly103, murine sequence numbering) in aqueous and membrane-associated environments to ascertain the stability of constituent secondary structure elements (alpha-helix from Glu80-Val91 and extended poly-proline type II from Thr92-Gly103) and the effects of phosphorylation of residues Thr92 and Thr95, individually and together. In aqueous solution, all four forms of the peptide bent in the middle to form a hydrophobic cluster. The phosphorylated variants were stabilized further by electrostatic interactions and formation of beta-structures, in agreement with previous spectroscopic data. In simulations performed with the peptide in association with a dimyristoylphosphatidylcholine bilayer, the amphipathic alpha-helical segment remained stable and membrane-associated, although the degree of penetration was less in the phosphorylated variants, and the tilt of the alpha-helix with respect to the plane of the membrane also changed significantly with the modifications. The extended segment adjacent to this alpha-helix represents a putative SH3-ligand and remained exposed to the cytoplasm (and thus accessible to binding partners). The results of these simulations demonstrate how this segment of the protein can act as a molecular switch: an amphipathic alpha-helical segment of the protein is membrane-associated and presents a subsequent proline-rich segment to the cytoplasm for interaction with other proteins. Phosphorylation of threonyl residues alters the degree of membrane penetration of the alpha-helix and the accessibility of the proline-rich ligand and can stabilize a beta-bend. A bend in this region of 18.5 kDa myelin basic protein suggests that the N- and C-termini of the proteins can interact with different leaflets of the myelin membrane and explain how a single protein can bring them close together. (c) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:674 / 683
页数:10
相关论文
empty
未找到相关数据