Fabrication, characterization and modeling of single-crystal thin film calorimeter sensors

被引:12
作者
Anahory, Y. [1 ]
Guihard, M. [1 ]
Smeets, D. [1 ]
Karmouch, R. [1 ]
Schiettekatte, F. [1 ]
Vasseur, P. [2 ]
Desjardins, P. [2 ]
Hu, Liang [3 ]
Allen, L. H. [3 ]
Leon-Gutierrez, E. [4 ]
Rodriguez-Viejo, J. [4 ]
机构
[1] Univ Montreal, RQMP, Dept Phys, Montreal, PQ H3C 3J7, Canada
[2] Ecole Polytech, Dept Genie Phys, RQMP, Montreal, PQ H3C 3A7, Canada
[3] Univ Illinois, Dept Mat Sci & Engn, Coordinated Sci Lab, Urbana, IL 61801 USA
[4] Univ Autonoma Barcelona, Dept Fis, Grp Nanomat & Microsistemes, Bellaterra 08193, Spain
基金
美国国家科学基金会;
关键词
Nanocalorimetry; Surface science; MEMS process; Finite-element modeling; HEAT-CAPACITY MEASUREMENTS; THERMAL-CONDUCTIVITY; AMORPHOUS-SILICON; NANOCALORIMETER; DESIGN;
D O I
10.1016/j.tca.2010.07.006
中图分类号
O414.1 [热力学];
学科分类号
摘要
Thin film based nanocalorimetry is a powerful tool to investigate nanosystems from a thermal point of view. However, nanocalorimetry is usually limited to amorphous or polycrystalline samples. Here we present a device that allows carrying out experiments on monocrystalline silicon. The monocrystalline silicon layer consists of the device layer from a silicon-on-insulator wafer and lies on a low-stress freestanding silicon nitride membrane. We applied a number of characterization techniques to determine the purity and quality of the silicon layer. All these techniques showed that the silicon surface is as pure as a standard silicon wafer and that it is susceptible to standard surface cleaning procedures. Additionally, we present a numerical model of the nanocalorimeter, which highlights that the silicon layer acts as a thermal plate thereby significantly improving thermal uniformity. This nanocalorimeter constitutes a promising device for the study of single-crystal Si surface processes and opens up an exciting new field of research in surface science. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:126 / 136
页数:11
相关论文
共 30 条
[1]   Extension of the 3ω method to measure the thermal conductivity of thin films without a reference sample [J].
Alvarez-Quintana, J. ;
Rodriguez-Viejo, J. .
SENSORS AND ACTUATORS A-PHYSICAL, 2008, 142 (01) :232-236
[2]  
[Anonymous], 2000, CRC HDB CHEM PHYS, V81st, P12
[3]   Scanning tunneling microscopy study of hydrogen-terminated Si(001) surfaces after wet cleaning [J].
Arima, K ;
Endo, K ;
Kataoka, T ;
Oshikane, Y ;
Inoue, H ;
Mori, Y .
SURFACE SCIENCE, 2000, 446 (1-2) :128-136
[4]   LOW-ENERGY ION ETCHING OF ALUMINUM-OXIDE FILMS AND NATIVE ALUMINUM-OXIDE [J].
DAY, ME ;
DELFINO, M ;
SALIMIAN, S .
JOURNAL OF APPLIED PHYSICS, 1992, 72 (11) :5467-5470
[5]   High-temperature degradation of NiSi films:: Agglomeration versus NiSi2 nucleation -: art. no. 033526 [J].
Deduytsche, D ;
Detavernier, C ;
Van Meirhaeghe, RL ;
Lavoie, C .
JOURNAL OF APPLIED PHYSICS, 2005, 98 (03)
[6]   Discrete periodic melting point observations for nanostructure ensembles [J].
Efremov, MY ;
Schiettekatte, F ;
Zhang, M ;
Olson, EA ;
Kwan, AT ;
Berry, RS ;
Allen, LH .
PHYSICAL REVIEW LETTERS, 2000, 85 (17) :3560-3563
[7]   Glass transition in ultrathin polymer films: Calorimetric study [J].
Efremov, MY ;
Olson, EA ;
Zhang, M ;
Zhang, Z ;
Allen, LH .
PHYSICAL REVIEW LETTERS, 2003, 91 (08)
[8]   Ultrasensitive, fast, thin-film differential scanning calorimeter [J].
Efremov, MY ;
Olson, EA ;
Zhang, M ;
Schiettekatte, F ;
Zhang, ZS ;
Allen, LH .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (01) :179-191
[9]   THERMAL CONDUCTIVITY OF SILICON + GERMANIUM FROM 3 DEGREES K TO MELTING POINT [J].
GLASSBRENNER, CJ ;
SLACK, GA .
PHYSICAL REVIEW, 1964, 134 (4A) :1058-+
[10]  
Ho C.Y., 1972, J. Phys. Chem. Ref. Data, V1, P279, DOI [10.1063/1.3253100, DOI 10.1063/1.3253100]