Universal invariants of quantum-mechanical and optical systems

被引:23
作者
Dodonov, VV [1 ]
Man'ko, OV
机构
[1] Univ Fed Sao Carlos, Dept Fis, BR-13565905 Sao Carlos, SP, Brazil
[2] PN Lebedev Phys Inst, Moscow 117924, Russia
关键词
D O I
10.1364/JOSAA.17.002403
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We give a brief review of the theory of quantum and optical universal invariants, i.e., certain combinations of the second- and higher-order moments (variances) of quantum-mechanical operators or the transverse phase-space coordinates of optical paraxial beams that are preserved in time (or along the axis of the beam) independently of the concrete form of the coefficients of the Hamiltonian or the parameters of the optical system, provided that the effective Hamiltonian is either a generic quadratic form of the generalized coordinate-momenta operators or a Linear combination of generators of certain finite-dimensional algebras. Using the phase-space representation of quantum mechanics (paraxial optics) in terms of the Wigner function, we elucidate the relation between the quantum invariants and the classical universal integral invariants of Poincare and Cartan. The specific features of the Gaussian beams are discussed as examples. (C) 2000 Optical Society of America [S0740-3232(00)04112-0] OCIS codes: 000.1600, 350.5500, 030.6600, 060.5530, 060.2310.
引用
收藏
页码:2403 / 2410
页数:8
相关论文
共 72 条
[1]  
[Anonymous], PHYS TECHNOLOGY LASE
[2]  
Arnaud J. A., 1976, Beam and Fiber Optics
[3]  
Arnold V. I., 1978, Mathematical methods of classical mechanics
[4]   On the phase space description of quantum nonlinear dynamics [J].
Atakishiyev, NM ;
Chumakov, SM ;
Rivera, AL ;
Wolf, KB .
PHYSICS LETTERS A, 1996, 215 (3-4) :128-134
[5]   METAPLECTIC GROUP AND FOURIER OPTICS [J].
BACRY, H ;
CADILHAC, M .
PHYSICAL REVIEW A, 1981, 23 (05) :2533-2536
[6]   Propagation characteristics of coherent array beams from carbon dioxide waveguide lasers [J].
Baker, HJ ;
Hall, DR ;
Hornby, AM ;
Morley, RJ ;
Taghizadeh, MR ;
Yelden, EF .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1996, 32 (03) :400-407
[7]   ABCD LAW FOR PARTIALLY COHERENT GAUSSIAN LIGHT, PROPAGATING THROUGH 1ST-ORDER OPTICAL-SYSTEMS [J].
BASTIAANS, MJ .
OPTICAL AND QUANTUM ELECTRONICS, 1992, 24 (09) :S1011-S1019
[8]  
BASTIAANS MJ, 1991, OPTIK, V88, P163
[9]   BEAM PROPAGATION AND THE ABCD RAY MATRICES [J].
BELANGER, PA .
OPTICS LETTERS, 1991, 16 (04) :196-198
[10]   Spatial parametric characterization of general polychromatic light beams [J].
Cao, Q ;
Deng, XM .
OPTICS COMMUNICATIONS, 1997, 142 (1-3) :135-145