Lorentz Ricci Solitons on 3-dimensional Lie groups

被引:51
作者
Onda, Kensuke [1 ]
机构
[1] Nagoya Univ, Grad Sch Math, Chikusa Ku, Nagoya, Aichi 4648602, Japan
关键词
Lie group; Left-invariant Lorentzian metric; Ricci soliton;
D O I
10.1007/s10711-009-9456-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The three-dimensional Heisenberg group H (3) has three left-invariant Lorentzian metrics g (1), g (2), and g (3) as in Rahmani (J. Geom. Phys. 9(3), 295-302 (1992)). They are not isometric to each other. In this paper, we characterize the left-invariant Lorentzian metric g (1) as a Lorentz Ricci Soliton. This Ricci Soliton g (1) is a shrinking non-gradient Ricci Soliton. We also prove that the group E(2) of rigid motions of Euclidean 2-space and the group E(1, 1) of rigid motions of Minkowski 2-space have Lorentz Ricci Solitons.
引用
收藏
页码:313 / 322
页数:10
相关论文
共 50 条
  • [41] Higher dimensional steady Ricci solitons with linear curvature decay
    Deng, Yuxing
    Zhu, Xiaohua
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2020, 22 (12) : 4097 - 4120
  • [42] Three-Dimensional Nonunimodular Lie Groups with a Riemannian Metric of an Invariant Ricci Soliton and a Semisymmetric Metric Connection
    P. N. Klepikov
    E. D. Rodionov
    O. P. Khromova
    Russian Mathematics, 2022, 66 : 65 - 69
  • [43] RICCI SOLITONS AND RICCI BI-CONFORMAL VECTOR FIELDS ON THE LIE GROUP H2 x R
    Azami, Shahroud
    Jafari, Mehdi
    REPORTS ON MATHEMATICAL PHYSICS, 2024, 93 (02) : 231 - 239
  • [44] New Type Direction Curves in 3-Dimensional Compact Lie Group
    Cakmak, Ali
    SYMMETRY-BASEL, 2019, 11 (03):
  • [45] Three-Dimensional Metric Lie Algebras and Ricci Flow
    May, Robert D.
    Wears, Thomas H.
    JOURNAL OF LIE THEORY, 2020, 30 (03) : 811 - 836
  • [46] Ricci solitons on almost Kenmotsu 3-manifolds
    Wang, Yaning
    OPEN MATHEMATICS, 2017, 15 : 1236 - 1243
  • [47] RICCI SOLITONS ON THREE-DIMENSIONAL η-EINSTEIN ALMOST KENMOTSU MANIFOLDS
    Wang, Yaning
    Liu, Ximin
    TAIWANESE JOURNAL OF MATHEMATICS, 2015, 19 (01): : 91 - 100
  • [48] Isometry groups of three-dimensional Lie groups
    Ana Cosgaya
    Silvio Reggiani
    Annals of Global Analysis and Geometry, 2022, 61 : 831 - 845
  • [49] On four-dimensional steady gradient Ricci solitons that dimension reduce
    Chow, Bennett
    Deng, Yuxing
    Ma, Zilu
    ADVANCES IN MATHEMATICS, 2022, 403
  • [50] Isometry groups of three-dimensional Lie groups
    Cosgaya, Ana
    Reggiani, Silvio
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2022, 61 (04) : 831 - 845