Lorentz Ricci Solitons on 3-dimensional Lie groups

被引:52
作者
Onda, Kensuke [1 ]
机构
[1] Nagoya Univ, Grad Sch Math, Chikusa Ku, Nagoya, Aichi 4648602, Japan
关键词
Lie group; Left-invariant Lorentzian metric; Ricci soliton;
D O I
10.1007/s10711-009-9456-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The three-dimensional Heisenberg group H (3) has three left-invariant Lorentzian metrics g (1), g (2), and g (3) as in Rahmani (J. Geom. Phys. 9(3), 295-302 (1992)). They are not isometric to each other. In this paper, we characterize the left-invariant Lorentzian metric g (1) as a Lorentz Ricci Soliton. This Ricci Soliton g (1) is a shrinking non-gradient Ricci Soliton. We also prove that the group E(2) of rigid motions of Euclidean 2-space and the group E(1, 1) of rigid motions of Minkowski 2-space have Lorentz Ricci Solitons.
引用
收藏
页码:313 / 322
页数:10
相关论文
共 12 条
[1]  
[Anonymous], INT MATH FORUM
[2]   Three-dimensional Ricci solitons which project to surfaces [J].
Baird, Paul ;
Danielo, Laurent .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2007, 608 :65-91
[3]  
Besse A. L., 2007, EINSTEIN MANIFOLDS
[4]  
Chow B., 2004, The Ricci Flow: An Introduction
[5]  
Guediri M., 1996, GEN RELAT GRAVIT, V9, P337
[6]   Linear stability of homogeneous Ricci solitons [J].
Guenther, Christine ;
Isenberg, James ;
Knopf, Dan .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2006, 2006
[7]   On the long-time behavior of type-III Ricci flow solutions [J].
Lott, John .
MATHEMATISCHE ANNALEN, 2007, 339 (03) :627-666
[8]   CURVATURES OF LEFT INVARIANT METRICS ON LIE GROUPS [J].
MILNOR, J .
ADVANCES IN MATHEMATICS, 1976, 21 (03) :293-329
[9]  
Nomizu K., 1979, Osaka J. Math., V16, P143
[10]  
Perelman G., 2002, DG0211159