Computational analysis of flow cytometry data in hematological malignancies: future clinical practice?

被引:38
作者
Duetz, Carolien [1 ]
Bachas, Costa [1 ]
Westers, Theresia M. [1 ]
van de Loosdrecht, Arjan A. [1 ]
机构
[1] Vrije Univ Amsterdam, Amsterdam UMC, Dept Hematol, Canc Ctr Amsterdam, Amsterdam, Netherlands
关键词
computational; diagnosis; flow cytometry; hematology; minimal residual disease; relapse; MINIMAL RESIDUAL DISEASE; ACUTE MYELOID-LEUKEMIA; AUTOMATED-ANALYSIS; CELL POPULATIONS; IMPLEMENTATION; IDENTIFICATION; VISUALIZATION;
D O I
10.1097/CCO.0000000000000607
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose of review This review outlines the advancements that have been made in computational analysis for clinical flow cytometry data in hematological malignancies. Recent findings In recent years, computational analysis methods have been applied to clinical flow cytometry data of hematological malignancies with promising results. Most studies combined dimension reduction (principle component analysis) or clustering methods (FlowSOM, generalized mixture models) with machine learning classifiers (support vector machines, random forest). For diagnosis and classification of hematological malignancies, many studies have reported results concordant with manual expert analysis, including B-cell chronic lymphoid leukemia detection and acute leukemia classification. Other studies, e.g. concerning diagnosis of myelodysplastic syndromes and classification of lymphoma, have shown to be able to increase diagnostic accuracy. With respect to treatment response monitoring, studies have focused on, for example, computational minimal residual disease detection in multiple myeloma and posttreatment classification of healthy or diseased in acute myeloid leukemia. The results of these studies are encouraging, although accurate relapse prediction remains challenging. To facilitate clinical implementation, collaboration and (prospective) validation in multicenter setting are necessary. Computational analysis methods for clinical flow cytometry data hold the potential to increase ease of use, objectivity and accuracy in the clinical work-up of hematological malignancies.
引用
收藏
页码:162 / 169
页数:8
相关论文
共 46 条
[21]  
Jolliffe I., 2014, International Encyclopedia of Statistical Science, P1094
[22]   Clinically validated machine learning algorithm for detecting residual diseases with multicolor flow cytometry analysis in acute myeloid leukemia and myelodysplastic syndrome [J].
Ko, Bor-Sheng ;
Wang, Yu-Fen ;
Li, Jeng-Lin ;
Li, Chi-Cheng ;
Weng, Pei-Fang ;
Hsu, Szu-Chun ;
Hou, Hsin-An ;
Huang, Huai-Hsuan ;
Yao, Ming ;
Lin, Chien-Ting ;
Liu, Jia-Hau ;
Tsai, Cheng-Hong ;
Huang, Tai-Chung ;
Wu, Shang-Ju ;
Huang, Shang-Yi ;
Chou, Wen-Chien ;
Tien, Hwei-Fang ;
Lee, Chi-Chun ;
Tang, Jih-Luh .
EBIOMEDICINE, 2018, 37 :91-100
[23]   Automated database-guided expert-supervised orientation for immunophenotypic diagnosis and classification of acute leukemia [J].
Lhermitte, L. ;
Mejstrikova, E. ;
van der Sluijs-Gelling, A. J. ;
Grigore, G. E. ;
Sedek, L. ;
Bras, A. E. ;
Gaipa, G. ;
da Costa, E. Sobral ;
Novakova, M. ;
Sonneveld, E. ;
Buracchi, C. ;
de Sa Bacelar, T. ;
Marvelde, J. G. te ;
Trinquand, A. ;
Asnafi, V. ;
Szczepanski, T. ;
Matarraz, S. ;
Lopez, A. ;
Vidriales, B. ;
Bulsa, J. ;
Hrusak, O. ;
Kalina, T. ;
Lecrevisse, Q. ;
Ayuso, M. Martin ;
Brueggemann, M. ;
Verde, J. ;
Fernandez, P. ;
Burgos, L. ;
Paiva, B. ;
Pedreira, C. E. ;
van Dongen, J. J. M. ;
Orfao, A. ;
van der Velden, V. H. J. .
LEUKEMIA, 2018, 32 (04) :874-881
[24]   Application of Machine Learning for Automatic MRD Assessment in Paediatric Acute Myeloid Leukaemia [J].
Licandro, Roxane ;
Reiter, Michael ;
Diem, Markus ;
Dworzak, Michael ;
Schumich, Angela ;
Kampel, Martin .
PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION APPLICATIONS AND METHODS (ICPRAM 2018), 2018, :401-408
[25]   The end of gating? An introduction to automated analysis of high dimensional cytometry data [J].
Mair, Florian ;
Hartmann, Felix J. ;
Mrdjen, Dunja ;
Tosevski, Vinko ;
Krieg, Carsten ;
Becher, Burkhard .
EUROPEAN JOURNAL OF IMMUNOLOGY, 2016, 46 (01) :34-43
[26]   Flow cytometry data analysis: Recent tools and algorithms [J].
Montante, Sebastiano ;
Brinkman, Ryan R. .
INTERNATIONAL JOURNAL OF LABORATORY HEMATOLOGY, 2019, 41 :56-62
[27]   Automated analysis of acute myeloid leukemia minimal residual disease using a support vector machine [J].
Ni, Wanmao ;
Hu, Beili ;
Zheng, Cuiping ;
Tong, Yin ;
Wang, Lei ;
Li, Qing-qing ;
Tong, Xiangmin ;
Han, Yong .
ONCOTARGET, 2016, 7 (44) :71915-71921
[28]   A Probabilistic Approach for the Evaluation of Minimal Residual Disease by Multiparameter Flow Cytometry in Leukemic B-Cell Chronic Lymphoproliferative Disorders [J].
Pedreira, C. E. ;
Costa, E. S. ;
Almeida, J. ;
Fernandez, C. ;
Quijano, S. ;
Flores, J. ;
Barrena, S. ;
Lecrevisse, Q. ;
Van Dongen, J. J. M. ;
Orfao, A. .
CYTOMETRY PART A, 2008, 73A (12) :1141-1150
[29]   Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE [J].
Qiu, Peng ;
Simonds, Erin F. ;
Bendall, Sean C. ;
Gibbs, Kenneth D., Jr. ;
Bruggner, Robert V. ;
Linderman, Michael D. ;
Sachs, Karen ;
Nolan, Garry P. ;
Plevritis, Sylvia K. .
NATURE BIOTECHNOLOGY, 2011, 29 (10) :886-U181
[30]   Automated Assessment of Disease Progression in Acute Myeloid Leukemia by Probabilistic Analysis of Flow Cytometry Data [J].
Rajwa, Bartek ;
Wallace, Paul K. ;
Griffiths, Elizabeth A. ;
Dundar, Murat .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2017, 64 (05) :1089-1098