Computational analysis of flow cytometry data in hematological malignancies: future clinical practice?

被引:38
作者
Duetz, Carolien [1 ]
Bachas, Costa [1 ]
Westers, Theresia M. [1 ]
van de Loosdrecht, Arjan A. [1 ]
机构
[1] Vrije Univ Amsterdam, Amsterdam UMC, Dept Hematol, Canc Ctr Amsterdam, Amsterdam, Netherlands
关键词
computational; diagnosis; flow cytometry; hematology; minimal residual disease; relapse; MINIMAL RESIDUAL DISEASE; ACUTE MYELOID-LEUKEMIA; AUTOMATED-ANALYSIS; CELL POPULATIONS; IMPLEMENTATION; IDENTIFICATION; VISUALIZATION;
D O I
10.1097/CCO.0000000000000607
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose of review This review outlines the advancements that have been made in computational analysis for clinical flow cytometry data in hematological malignancies. Recent findings In recent years, computational analysis methods have been applied to clinical flow cytometry data of hematological malignancies with promising results. Most studies combined dimension reduction (principle component analysis) or clustering methods (FlowSOM, generalized mixture models) with machine learning classifiers (support vector machines, random forest). For diagnosis and classification of hematological malignancies, many studies have reported results concordant with manual expert analysis, including B-cell chronic lymphoid leukemia detection and acute leukemia classification. Other studies, e.g. concerning diagnosis of myelodysplastic syndromes and classification of lymphoma, have shown to be able to increase diagnostic accuracy. With respect to treatment response monitoring, studies have focused on, for example, computational minimal residual disease detection in multiple myeloma and posttreatment classification of healthy or diseased in acute myeloid leukemia. The results of these studies are encouraging, although accurate relapse prediction remains challenging. To facilitate clinical implementation, collaboration and (prospective) validation in multicenter setting are necessary. Computational analysis methods for clinical flow cytometry data hold the potential to increase ease of use, objectivity and accuracy in the clinical work-up of hematological malignancies.
引用
收藏
页码:162 / 169
页数:8
相关论文
共 46 条
[1]  
Aghaeepour N, 2013, NAT METHODS, V10, P228, DOI [10.1038/NMETH.2365, 10.1038/nmeth.2365]
[2]   viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia [J].
Amir, El-ad David ;
Davis, Kara L. ;
Tadmor, Michelle D. ;
Simonds, Erin F. ;
Levine, Jacob H. ;
Bendall, Sean C. ;
Shenfeld, Daniel K. ;
Krishnaswamy, Smita ;
Nolan, Garry P. ;
Pe'er, Dana .
NATURE BIOTECHNOLOGY, 2013, 31 (06) :545-+
[3]  
[Anonymous], 15 INT S MYEL SYNDR
[4]  
[Anonymous], CYTOMETRY B
[5]   Big Data and Machine Learning in Health Care [J].
Beam, Andrew L. ;
Kohane, Isaac S. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2018, 319 (13) :1317-1318
[6]  
Breiman L., 2001, IEEE Trans. Broadcast., V45, P5
[7]   Stepwise discriminant function analysis for rapid identification of acute promyelocytic leukemia from acute myeloid leukemia with multiparameter flow cytometry [J].
Chen, Zhanguo ;
Li, Yan ;
Tong, Yongqing ;
Gao, Qingping ;
Mao, Xiaolu ;
Zhang, Wenjing ;
Xia, Zunen ;
Fu, Chaohong .
INTERNATIONAL JOURNAL OF HEMATOLOGY, 2016, 103 (03) :306-315
[8]   Automated pattern-guided principal component analysis vs expert-based immunophenotypic classification of B-cell chronic lymphoproliferative disorders: a step forward in the standardization of clinical immunophenotyping [J].
Costa, E. S. ;
Pedreira, C. E. ;
Barrena, S. ;
Lecrevisse, Q. ;
Flores, J. ;
Quijano, S. ;
Almeida, J. ;
del Carmen Garcia-Macias, M. ;
Bottcher, S. ;
Van Dongen, J. J. M. ;
Orfao, A. .
LEUKEMIA, 2010, 24 (11) :1927-1933
[9]   Flow cytometric immunophenotyping for hematologic neoplasms [J].
Craig, Fiona E. ;
Foon, Kenneth A. .
BLOOD, 2008, 111 (08) :3941-3967
[10]   Implementation of erythroid lineage analysis by flow cytometry in diagnostic models for myelodysplastic syndromes [J].
Cremers, Eline M. P. ;
Westers, Theresia M. ;
Alhan, Canan ;
Cali, Claudia ;
Visser-Wisselaar, Heleen A. ;
Chitu, Dana A. ;
van der Velden, Vincent H. J. ;
te Marvelde, Jeroen G. ;
Klein, Saskia K. ;
Muus, Petra ;
Vellenga, Edo ;
de Greef, Georgina E. ;
Legdeur, Marie-Cecile C. J. C. ;
Wijermans, Pierre W. ;
Stevens-Kroef, Marian J. P. L. ;
da Silva-Coelho, Pedro ;
Jansen, Joop H. ;
Ossenkoppele, Gert J. ;
van de Loosdrecht, Arjan A. .
HAEMATOLOGICA, 2017, 102 (02) :320-326