Existence and nonexistence of patterns on Riemannian manifolds

被引:25
作者
Bandle, Catherine [2 ]
Punzo, Fabio [1 ]
Tesei, Alberto [1 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Matemat G Castelnuovo, I-00185 Rome, Italy
[2] Univ Basel, Math Inst, CH-4051 Basel, Switzerland
关键词
Semilinear parabolic problem; Stable solutions; Eigenvalue problem; Ricci curvature; Surfaces of revolutions; REACTION-DIFFUSION EQUATIONS;
D O I
10.1016/j.jmaa.2011.08.060
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study existence and nonexistence of patterns on Riemannian manifolds, depending on the Ricci curvature of the manifold and suitable assumptions on the boundary. In the case of surfaces of revolutions in R(3), necessary and sufficient conditions for existence of patterns are given. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:33 / 47
页数:15
相关论文
共 13 条
[1]  
[Anonymous], 1993, Riemannian Geometry
[2]   INSTABILITY RESULTS FOR REACTION DIFFUSION EQUATIONS WITH NEUMANN BOUNDARY-CONDITIONS [J].
CASTEN, RG ;
HOLLAND, CJ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1978, 27 (02) :266-273
[3]  
Farina A., 2008, STABLE SOLUTIONS ELL
[4]   Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds [J].
Grigor'yan, A .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 36 (02) :135-249
[5]   A NONLINEAR PARABOLIC EQUATION WITH VARYING DOMAIN [J].
HALE, JK ;
VEGAS, J .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1984, 86 (02) :99-123
[6]  
Henry D., 1981, Springer Lectures Notes in Mathematics, V840
[8]   THE SPATIAL HOMOGENEITY OF STABLE EQUILIBRIA OF SOME REACTION DIFFUSION-SYSTEMS ON CONVEX DOMAINS [J].
KISHIMOTO, K ;
WEINBERGER, HF .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1985, 58 (01) :15-21
[9]  
Matano H., 1979, Publ. Res. Inst. Math. Sci, V15, P401, DOI [DOI 10.2977/PRIMS/1195188180, DOI 10.2977/PRIMS/1195188180.MR555661]
[10]  
Murray J. D., 2001, Mathematical biology II: Spatial models and biomedical applications, V3