Coherent optical clock down-conversion for microwave frequencies with 10-18 instability

被引:114
作者
Nakamura, Takuma [1 ,2 ]
Davila-Rodriguez, Josue [1 ]
Leopardi, Holly [1 ,2 ]
Sherman, Jeff A. [1 ]
Fortier, Tara M. [1 ,2 ]
Xie, Xiaojun [3 ]
Campbell, Joe C. [3 ]
McGrew, William F. [1 ,2 ]
Zhang, Xiaogang [1 ,2 ]
Hassan, Youssef S. [1 ,2 ]
Nicolodi, Daniele [1 ,2 ]
Beloy, Kyle [1 ]
Ludlow, Andrew D. [1 ,2 ]
Diddams, Scott A. [1 ,2 ]
Quinlan, Franklyn [1 ,2 ]
机构
[1] NIST, Time & Frequency Div, 325 Broadway, Boulder, CO 80305 USA
[2] Univ Colorado, Dept Phys, 440 UCB, Boulder, CO 80309 USA
[3] Univ Virginia, Dept Elect & Comp Engn, Charlottesville, VA 22904 USA
关键词
PHASE-CONTROL; NOISE; COMB; CARRIER; LASER; MULTIBRANCH; GENERATION; METROLOGY;
D O I
10.1126/science.abb2473
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Optical atomic clocks are poised to redefine the Systeme International (SI) second, thanks to stability and accuracy more than 100 times better than the current microwave atomic clock standard. However, the best optical clocks have not seen their performance transferred to the electronic domain, where radar, navigation, communications, and fundamental research rely on less stable microwave sources. By comparing two independent optical-to-electronic signal generators, we demonstrate a 10-gigahertz microwave signal with phase that exactly tracks that of the optical clock phase from which it is derived, yielding an absolute fractional frequency instability of 1 x 10(-18) in the electronic domain. Such faithful reproduction of the optical clock phase expands the opportunities for optical clocks both technologically and scientifically for time dissemination, navigation, and long-baseline interferometric imaging.
引用
收藏
页码:889 / +
页数:27
相关论文
共 49 条
[1]  
AnalogDevices, 1999, TECHN TUT DIG SIGN S
[2]   Attosecond timing in optical-to-electrical conversion [J].
Baynes, Fred N. ;
Quinlan, Franklyn ;
Fortier, Tara M. ;
Zhou, Qiugui ;
Beling, Andreas ;
Campbell, Joe C. ;
Diddams, Scott A. .
OPTICA, 2015, 2 (02) :141-146
[3]   27Al+ Quantum-Logic Clock with a Systematic Uncertainty below 10-18 [J].
Brewer, S. M. ;
Chen, J-S ;
Hankin, A. M. ;
Clements, E. R. ;
Chou, C. W. ;
Wineland, D. J. ;
Hume, D. B. ;
Leibrandt, D. R. .
PHYSICAL REVIEW LETTERS, 2019, 123 (03)
[4]   A VLBI experiment using a remote atomic clock via a coherent fibre link [J].
Clivati, Cecilia ;
Ambrosini, Roberto ;
Artz, Thomas ;
Bertarini, Alessandra ;
Bortolotti, Claudio ;
Frittelli, Matteo ;
Levi, Filippo ;
Mura, Alberto ;
Maccaferri, Giuseppe ;
Nanni, Mauro ;
Negusini, Monia ;
Perini, Federico ;
Roma, Mauro ;
Stagni, Matteo ;
Zucco, Massimo ;
Calonico, Davide .
SCIENTIFIC REPORTS, 2017, 7
[5]   Optimizing the linearity in high-speed photodiodes [J].
Davila-Rodriguez, J. ;
Xie, X. ;
Zang, J. ;
Long, C. J. ;
Fortier, T. M. ;
Leopardi, H. ;
Nakamura, T. ;
Campbell, J. C. ;
Diddams, S. A. ;
Quinlan, F. .
OPTICS EXPRESS, 2018, 26 (23) :30532-30545
[6]   LASER PHASE AND FREQUENCY STABILIZATION USING AN OPTICAL-RESONATOR [J].
DREVER, RWP ;
HALL, JL ;
KOWALSKI, FV ;
HOUGH, J ;
FORD, GM ;
MUNLEY, AJ ;
WARD, H .
APPLIED PHYSICS B-PHOTOPHYSICS AND LASER CHEMISTRY, 1983, 31 (02) :97-105
[7]  
Fortier TM, 2011, NAT PHOTONICS, V5, P425, DOI [10.1038/NPHOTON.2011.121, 10.1038/nphoton.2011.121]
[8]   Real-time phase tracking for wide-band optical frequency measurements at the 20th decimal place [J].
Giunta, Michele ;
Haensel, Wolfgang ;
Fischer, Marc ;
Lezius, Matthias ;
Udem, Thomas ;
Holzwarth, Ronald .
NATURE PHOTONICS, 2020, 14 (01) :44-+
[9]   Frequency Ratio of Two Optical Clock Transitions in 171Yb+ and Constraints on the Time Variation of Fundamental Constants [J].
Godun, R. M. ;
Nisbet-Jones, P. B. R. ;
Jones, J. M. ;
King, S. A. ;
Johnson, L. A. M. ;
Margolis, H. S. ;
Szymaniec, K. ;
Lea, S. N. ;
Bongs, K. ;
Gill, P. .
PHYSICAL REVIEW LETTERS, 2014, 113 (21)
[10]   Space VLBI: from first ideas to operational missions [J].
Gurvits, Leonid I. .
ADVANCES IN SPACE RESEARCH, 2020, 65 (02) :868-876