Binder-free carbon fiber-based lithium-nickel-manganese-oxide composite cathode with improved electrochemical stability against high voltage: Effects of composition on electrode performance

被引:10
作者
Liu, Yi-Hung [1 ]
Lin, Heng-Han [1 ]
Tai, Yu-Ju [1 ]
机构
[1] Natl Univ Tainan, Dept Greenergy, 33,Sect 2,Shu Lin St, Tainan 70005, Taiwan
关键词
Carbon fiber; Binder free; Cathode material; High voltage; Lithium ion battery; SODIUM-ION BATTERY; METAL HYDRIDE BATTERY; NI(OH)(2) ELECTRODE; NEGATIVE-ELECTRODE; CURRENT COLLECTOR; HIGH-CAPACITY; LINI0.5MN1.5O4; SPINEL; LIMN2O4; STORAGE;
D O I
10.1016/j.jallcom.2017.11.056
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A binder-free nickel-manganese-based cathode is developed using carbon fibers as current collector via a low-temperature sequential process including electrodeposition, hydrothermal reaction, and calcination. The physical and electrochemical properties of the fiber-type cathodes are found to depend significantly on the Mn: Ni molar ratio and calcination temperature. The typical cathode material exhibits flake-like morphology and is composed of spinel LiMn2O4 (LMO), LiNi0.5Mn1.5O4 (LNMO), and lithium-rich layered Li2MnO3 (LRL-LMO), forming an LMO/LNMO composite. During electrochemical evaluation under high voltage operation at 2.5-4.9 V, the fiber-type LMO/LNMO cathode shows discharge capacity of similar to 140 mAh g(-1) with enhanced discharge voltage and stable cycle performance with over 98% capacity retention after 50 cycles. The capacity of fiber-type LMO cathode decays from 120 mAh g(-1) with cycling (2.5e4.9 V), and begins to fail at the 12th cycle. Hence, the spinel LNMO can function as a framework to stabilize the LMO/LNMO composite material against high voltage. Fiber-type LMO/LNMO cathode benefits from the integrated electrochemical characteristics of spinel LMO, LNMO, and LRL-LMO, leading to improved electrode performance. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:580 / 587
页数:8
相关论文
共 43 条
[1]   Preparation and electrochemical investigation of LiMn2-xMexO4 (Me:Ni, Fe, and x=0.5, 1) cathode materials for secondary lithium batteries [J].
Amine, K ;
Tukamoto, H ;
Yasuda, H ;
Fujita, Y .
JOURNAL OF POWER SOURCES, 1997, 68 (02) :604-608
[2]   LiMnPO4 - A next generation cathode material for lithium-ion batteries [J].
Aravindan, Vanchiappan ;
Gnanaraj, Joe ;
Lee, Yun-Sung ;
Madhavi, Srinivasan .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (11) :3518-3539
[3]   Thin-film lithium and lithium-ion batteries [J].
Bates, JB ;
Dudney, NJ ;
Neudecker, B ;
Ueda, A ;
Evans, CD .
SOLID STATE IONICS, 2000, 135 (1-4) :33-45
[4]  
Besenhard JO, 2002, CHEMPHYSCHEM, V3, P155, DOI 10.1002/1439-7641(20020215)3:2<155::AID-CPHC155>3.0.CO
[5]  
2-S
[6]   Structure of Li2MnO3 with different degrees of defects [J].
Boulineau, A. ;
Croguennec, L. ;
Delmas, C. ;
Weill, F. .
SOLID STATE IONICS, 2010, 180 (40) :1652-1659
[7]   Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors [J].
Choi, Nam-Soon ;
Chen, Zonghai ;
Freunberger, Stefan A. ;
Ji, Xiulei ;
Sun, Yang-Kook ;
Amine, Khalil ;
Yushin, Gleb ;
Nazar, Linda F. ;
Cho, Jaephil ;
Bruce, Peter G. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (40) :9994-10024
[8]   Nanostructured Lithium Nickel Manganese Oxides for Lithium-Ion Batteries [J].
Deng, Haixia ;
Belharouak, Ilias ;
Cook, Russel E. ;
Wu, Huiming ;
Sun, Yang-Kook ;
Amine, Khalil .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (04) :A447-A452
[9]   Nickel-Cobalt Hydroxide Nanosheets Coated on NiCo2O4 Nanowires Grown on Carbon Fiber Paper for High-Performance Pseudocapacitors [J].
Huang, Liang ;
Chen, Dongchang ;
Ding, Yong ;
Feng, Shi ;
Wang, Zhong Lin ;
Liu, Meilin .
NANO LETTERS, 2013, 13 (07) :3135-3139
[10]   Dissolution of spinel oxides and capacity losses in 4V Li/LixMn2O4 coils [J].
Jang, DH ;
Shin, YJ ;
Oh, SM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (07) :2204-2211