On sums of squares of primes and a k-th power of prime

被引:5
作者
Liu, Zhixin [1 ]
Zhang, Rui [1 ]
机构
[1] Tianjin Univ, Sch Math, Tianjin 300072, Peoples R China
来源
MONATSHEFTE FUR MATHEMATIK | 2019年 / 188卷 / 02期
关键词
Waring-Goldbach problem; Circle method; Exceptional set; 11P32; 11P55;
D O I
10.1007/s00605-018-1181-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this short paper, we consider the exceptional set of integers, not restricted by elementary congruence conditions, which cannot be represented as sums of two squares of primes and a k-th power of prime for any integer k3. Our results improve the recent results due to Brudern (in: Sander, Steuding, Steuding (eds) From arithmetic to zeta-functions, Springer, Cham 2016). The similar method can be also applied to some related questions in this direction, and this can improve the previous results.
引用
收藏
页码:269 / 285
页数:17
相关论文
共 20 条
[1]   On the Vinogradov mean value [J].
Bourgain, J. .
PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2017, 296 (01) :30-40
[2]  
Brudern J, 2016, FROM ARITHMETIC TO Z
[3]   On sums of squares of primes [J].
Harman, G ;
Kumchev, AV .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2006, 140 :1-13
[4]   On sums of squares of primes II [J].
Harman, Glyn ;
Kumchev, Angel .
JOURNAL OF NUMBER THEORY, 2010, 130 (09) :1969-2002
[5]  
Hua LK., 1965, Additive Theory of Prime Numbers
[6]  
Hua LK., 1938, Quart. J. Math. Oxford, V9, P68, DOI [10.1093/qmath/os-9.1.68, DOI 10.1093/QMATH/OS-9.1.68]
[7]   ON SUMS OF FOUR SQUARES OF PRIMES [J].
Kumchev, Angel ;
Zhao, Lilu .
MATHEMATIKA, 2016, 62 (02) :348-361
[8]   On weyl sums over primes and almost primes [J].
Kumchev, Angel V. .
MICHIGAN MATHEMATICAL JOURNAL, 2006, 54 (02) :243-268
[9]   ON GENERALIZED QUADRATIC EQUATIONS IN 3 PRIME VARIABLES [J].
LEUNG, MC ;
LIU, MC .
MONATSHEFTE FUR MATHEMATIK, 1993, 115 (1-2) :133-167
[10]   Enlarged major arcs in the Waring-Goldbach problem [J].
Li, Taiyu .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2016, 12 (01) :205-217