Toughness of Kronecker product of graphs

被引:0
作者
Guji, Raxida [1 ,2 ]
Ali, Tursun [2 ]
机构
[1] Fuzhou Univ, Ctr Discrete Math, Fuzhou 350002, Fujian, Peoples R China
[2] Xinjiang Univ Finance & Econ, Sch Appl Math, Urumqi 830012, Peoples R China
关键词
toughness; Kronecker product; complete graph; CONNECTIVITY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The toughness t(G) of a noncomplete graph G is defined as t(G) = min{vertical bar S vertical bar/omega(G - S) vertical bar S subset of V(G), omega(G - S) >= 2} and the toughness of a complete graph is infinity, where omega(G - S) is the number of connected components of G - S. In this paper, we give the sharp upper and lower bounds for Kronecker product of a complete graph and a tree. Moreover, we determine the toughness of Kronecker product of a complete graph and a star, a path, respectively.
引用
收藏
页码:149 / 156
页数:8
相关论文
共 13 条
[1]   Independent sets in tensor graph powers [J].
Alon, Noga ;
Lubetzky, Eyal .
JOURNAL OF GRAPH THEORY, 2007, 54 (01) :73-87
[2]   ON THE COMPLEXITY OF RECOGNIZING TOUGH GRAPHS [J].
BAUER, D ;
MORGANA, A ;
SCHMEICHEL, E .
DISCRETE MATHEMATICS, 1994, 124 (1-3) :13-17
[3]   Some remarks on the Kronecker product of graphs [J].
Bottreau, A ;
Metivier, Y .
INFORMATION PROCESSING LETTERS, 1998, 68 (02) :55-61
[4]   Hypercubes as direct products [J].
Bresar, B ;
Imrich, W ;
Klavzar, S ;
Zmazek, B .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2005, 18 (04) :778-786
[5]  
Chvatal V., 1973, Discrete Mathematics, V5, P215, DOI 10.1016/0012-365X(73)90138-6
[6]   A finite automata approach to modeling the cross product of interconnection networks [J].
Ghozati, SA .
MATHEMATICAL AND COMPUTER MODELLING, 1999, 30 (7-8) :185-200
[7]  
Goddard W.D., 1990, Quaestiones Math, V13, P217
[8]  
Lammprey R., 1974, Model Simul, V5, P1119
[9]   Vertex vulnerability parameters of Kronecker products of complete graphs [J].
Mamut, Aygul ;
Vumar, Elkin .
INFORMATION PROCESSING LETTERS, 2008, 106 (06) :258-262
[10]  
Pippert R.E., 1972, Lecture Notes in Math, V303, P225