SARS-CoV-2 Spike Protein Destabilizes Microvascular Homeostasis

被引:16
|
作者
Panigrahi, Soumya [1 ]
Goswami, Tamal [2 ]
Ferrari, Brian [1 ]
Antonelli, Christopher J. [1 ]
Bazdar, Douglas A. [1 ]
Gilmore, Hannah [3 ]
Freeman, Michael L. [1 ]
Lederman, Michael M. [1 ]
Sieg, Scott F. [1 ]
机构
[1] Case Western Reserve Univ, Div Infect Dis & HIV Med, Sch Med, Cleveland, OH 44106 USA
[2] Raiganj Univ, Dept Chem, Raiganj, W Bengal, India
[3] Case Western Reserve Univ, Dept Pathol, Sch Med, Cleveland, OH 44106 USA
来源
MICROBIOLOGY SPECTRUM | 2021年 / 9卷 / 03期
关键词
COVID-19; spike protein; endothelial cells; KRUPPEL-LIKE FACTOR-2; CONVERTING ENZYME 2; LIGAND-BINDING; BRADYKININ B-2; ACE2; ACTIVATION; RECEPTORS; EXPRESSION; ICATIBANT; AFFINITY;
D O I
10.1128/Spectrum.00735-21
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
SARS-CoV-2 infection can cause compromised respiratory function and thrombotic events. SARS-CoV-2 binds to and mediates downregulation of angiotensin converting enzyme 2 (ACE2) on cells that it infects. Theoretically, diminished enzymatic activity of ACE2 may result in increased concentrations of pro-inflammatory molecules, angiotensin II, and Bradykinin, contributing to SARS-CoV-2 pathology. Using immunofluorescence microscopy of lung tissues from uninfected, and SARS-CoV-2 infected individuals, we find evidence that ACE2 is highly expressed in human pulmonary alveolar epithelial cells and significantly reduced along the alveolar lining of SARS-CoV-2 infected lungs. Ex vivo analyses of primary human cells, indicated that ACE2 is readily detected in pulmonary alveolar epithelial and aortic endothelial cells. Exposure of these cells to spike protein of SARS-CoV-2 was sufficient to reduce ACE2 expression. Moreover, exposure of endothelial cells to spike protein-induced dysfunction, caspase activation, and apoptosis. Exposure of endothelial cells to bradykinin caused calcium signaling and endothelial dysfunction (increased expression of von Willibrand Factor and decreased expression of Kruppel-like Factor 2) but did not adversely affect viability in primary human aortic endothelial cells. Computer-assisted analyses of molecules with potential to bind bradykinin receptor B2 (BKRB2), suggested a potential role for aspirin as a BK antagonist. When tested in our in vitro model, we found evidence that aspirin can blunt cell signaling and endothelial dysfunction caused by bradykinin in these cells. Interference with interactions of spike protein or bradykinin with endothelial cells may serve as an important strategy to stabilize microvascular homeostasis in COVID-19 disease. IMPORTANCE SARS-CoV-2 causes complex effects on microvascular homeostasis that potentially contribute to organ dysfunction and coagulopathies. SARS-CoV-2 binds to, and causes downregulation of angiotensin converting enzyme 2 (ACE2) on cells that it infects. It is thought that reduced ACE2 enzymatic activity can contribute to inflammation and pathology in the lung. Our studies add to this understanding by providing evidence that spike protein alone can mediate adverse effects on vascular cells. Understanding these mechanisms of pathogenesis may provide rationale for interventions that could limit microvascular events associated with SARS-CoV-2 infection.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Be aware of SARS-CoV-2 spike protein: There is more than meets the eye
    Theoharides, T. C.
    Conti, P.
    JOURNAL OF BIOLOGICAL REGULATORS AND HOMEOSTATIC AGENTS, 2021, 35 (03) : 833 - 838
  • [2] Cellular signalling by SARS-CoV-2 spike protein
    Gracie, Nicholas P.
    Lai, Lachlan Y. S.
    Newsome, Timothy P.
    MICROBIOLOGY AUSTRALIA, 2024, 45 (01) : 13 - 17
  • [3] Calreticulin Regulates SARS-CoV-2 Spike Protein Turnover and Modulates SARS-CoV-2 Infectivity
    Rahimi, Nader
    White, Mitchell R.
    Amraei, Razie
    Lotfollahzadeh, Saran
    Xia, Chaoshuang
    Michalak, Marek
    Costello, Catherine E.
    Muhlberger, Elke
    CELLS, 2023, 12 (23)
  • [4] Potential antiviral peptides targeting the SARS-CoV-2 spike protein
    Khater, Ibrahim
    Nassar, Aaya
    BMC PHARMACOLOGY & TOXICOLOGY, 2022, 23 (01)
  • [5] Molecular biology of the SARs-CoV-2 spike protein: A review of current knowledge
    Zhu, Chaogeng
    He, Guiyun
    Yin, Qinqin
    Zeng, Lin
    Ye, Xiangli
    Shi, Yongzhong
    Xu, Wei
    JOURNAL OF MEDICAL VIROLOGY, 2021, 93 (10) : 5729 - 5741
  • [6] SARS-CoV-2 Spike Protein Interaction Space
    Lungu, Claudiu N.
    Putz, Mihai V.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (15)
  • [7] Biomimetic SARS-CoV-2 Spike Protein Nanoparticles
    Phan, Alvin
    Avila, Hugo
    MacKay, J. Andrew
    BIOMACROMOLECULES, 2023, 24 (05) : 2030 - 2041
  • [8] Rotavirus as an Expression Platform of Domains of the SARS-CoV-2 Spike Protein
    Philip, Asha Ann
    Patton, John Thomas
    VACCINES, 2021, 9 (05)
  • [9] Direct Inhibition of SARS-CoV-2 Spike Protein by Peracetic Acid
    Yamamoto, Yuichiro
    Nakano, Yoshio
    Murae, Mana
    Shimizu, Yoshimi
    Sakai, Shota
    Ogawa, Motohiko
    Mizukami, Tomoharu
    Inoue, Tetsuya
    Onodera, Taishi
    Takahashi, Yoshimasa
    Wakita, Takaji
    Fukasawa, Masayoshi
    Miyazaki, Satoru
    Noguchi, Kohji
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (01)
  • [10] SARS-CoV-2 spike protein: pathogenesis, vaccines, and potential therapies
    Almehdi, Ahmed M.
    Khoder, Ghalia
    Alchakee, Aminah S.
    Alsayyid, Azizeh T.
    Sarg, Nadin H.
    Soliman, Sameh S. M.
    INFECTION, 2021, 49 (05) : 855 - 876