Scaling relations in large-Prandtl-number natural thermal convection

被引:33
作者
Shishkina, Olga [1 ]
Emran, Mohammad S. [1 ]
Grossmann, Siegfried [2 ]
Lohse, Detlef [1 ,3 ,4 ]
机构
[1] Max Planck Inst Dynam & Self Org, Fassberg 17, D-37077 Gottingen, Germany
[2] Philipps Univ, Fachbereich Phys, Renthof 6, D-35032 Marburg, Germany
[3] Univ Twente, Max Planck Ctr Complex Fluid Dynam, Mesa Inst, Phys Fluids Grp,Dept Sci & Engn, POB 217, NL-7500 AE Enschede, Netherlands
[4] Univ Twente, JM Burgers Ctr Fluid Dynam, POB 217, NL-7500 AE Enschede, Netherlands
关键词
RAYLEIGH-BENARD CONVECTION; UNIFYING THEORY; HEAT-TRANSFER;
D O I
10.1103/PhysRevFluids.2.103502
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In this study, we follow Grossmann and Lohse [Phys. Rev. Lett. 86, 3316 (2001)], who derived various scalings regimes for the dependence of the Nusselt number Nu and the Reynolds number Re on the Rayleigh number Ra and the Prandtl number Pr. We focus on theoretical arguments as well as on numerical simulations for the case of large-Pr natural thermal convection. Based on an analysis of self-similarity of the boundary layer equations, we derive that in this case the limiting large-Pr boundary-layer dominated regime is I-infinity(<), introduced and defined by Grossmann and Lohse [Phys. Rev. Lett. 86, 3316 (2001)], with the scaling relations Nu similar to Pr-0 Ra-1/3 and Re similar to Pr-1 Ra-2/3. Our direct numerical simulations for Ra from 10(4) to 10(9) and Pr from 0.1 to 200 showthat the regime I-infinity(<) is almost indistinguishable from the regime III infinity, where the kinetic dissipation is bulk-dominated. With increasing Ra, the scaling relations undergo a transition to those in IVu of Grossmann and Lohse [Phys. Rev. Lett. 86, 3316 (2001)], where the thermal dissipation is determined by its bulk contribution.
引用
收藏
页数:9
相关论文
共 36 条
[1]   Heat transfer and large scale dynamics in turbulent Rayleigh-Benard convection [J].
Ahlers, Guenter ;
Grossmann, Siegfried ;
Lohse, Detlef .
REVIEWS OF MODERN PHYSICS, 2009, 81 (02) :503-537
[2]  
[Anonymous], 1905, VERH 3 INT MATH K HE
[3]  
Blasius H., 1908, Z. Angew. Math. Phys., V56, P1
[4]   Recent developments in Rayleigh-Benard convection [J].
Bodenschatz, E ;
Pesch, W ;
Ahlers, G .
ANNUAL REVIEW OF FLUID MECHANICS, 2000, 32 :709-778
[5]   New perspectives in turbulent Rayleigh-Benard convection [J].
Chilla, F. ;
Schumacher, J. .
EUROPEAN PHYSICAL JOURNAL E, 2012, 35 (07)
[6]   Fluctuating Thermal Boundary Layers and Heat Transfer in Turbulent Rayleigh-Benard Convection [J].
Ching, Emily S. C. ;
Dung, On-Yu ;
Shishkina, Olga .
JOURNAL OF STATISTICAL PHYSICS, 2017, 167 (3-4) :626-635
[7]   Heat flux and shear rate in turbulent convection [J].
Ching, ESC .
PHYSICAL REVIEW E, 1997, 55 (01) :1189-1192
[8]   Strongly turbulent Rayleigh-Benard convection in mercury: Comparison with results at moderate Prandtl number [J].
Cioni, S ;
Ciliberto, S ;
Sommeria, J .
JOURNAL OF FLUID MECHANICS, 1997, 335 :111-140
[9]   Scaling in thermal convection: a unifying theory [J].
Grossmann, S ;
Lohse, D .
JOURNAL OF FLUID MECHANICS, 2000, 407 :27-56
[10]   Prandtl and Rayleigh number dependence of the Reynolds number in turbulent thermal convection [J].
Grossmann, S ;
Lohse, D .
PHYSICAL REVIEW E, 2002, 66 (01) :1-016305