Strengthening effects of finely ground fly ash, granulated blast furnace slag, and their combination

被引:52
|
作者
Tan, KF [1 ]
Pu, XC
机构
[1] SW Inst Technol, Mianyang, Sichuan, Peoples R China
[2] Chongqing Jianzhu Univ, Chongqing, Peoples R China
关键词
D O I
10.1016/S0008-8846(98)00158-6
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The effect of finely ground fly ash (FGFA), finely ground granulated blast furnace slag (FGGBS), and their combination on the compressive strength of concrete was studied. Test results showed that incorporating 20% FGFA or FGGBS can significantly increase the compressive strength of concrete after 3 days. The compressive strength of concrete-incorporating the combination of FGFA and FGGBS is higher than both FGFA concrete and FGGBS concrete, and is quantitatively similar to that of silica fume concrete. Scanning electron microscopic analysis showed that, after the incorporation of the combination of FGFA and FGGBS, a great quantity of a stick-like substance exist in the surface of hardened paste being investigated. The electron probe x-ray microanalyzer analysis showed that the stick-like substance was most probably the sheet C-S-H rolled up during specimen preparation for scanning electron microscopic analysis, which may be the mechanism of the strengthening effect of the combination of FGFA and FGGBS. (C) 1998 Elsevier Science Ltd.
引用
收藏
页码:1819 / 1825
页数:7
相关论文
共 50 条
  • [11] Effect of curing temperature on hardened concrete properties - Mixtures of ground granulated blast furnace slag, fly ash, or a combination of both
    Hale, WM
    Bush, TD
    Russell, BW
    Freyne, SF
    CONCRETE MATERIALS 2005, 2005, (1914): : 97 - 104
  • [12] Experimental study on shrinkage of HPC containing fly ash and ground granulated blast-furnace slag
    Zhao, Yanhua
    Gong, Jinxin
    Zhao, Sumei
    CONSTRUCTION AND BUILDING MATERIALS, 2017, 155 : 145 - 153
  • [13] Mix design development of fly ash and ground granulated blast furnace slag based geopolymer concrete
    Reddy, M. Srinivasula
    Dinakar, P.
    Rao, B. Hanumantha
    JOURNAL OF BUILDING ENGINEERING, 2018, 20 : 712 - 722
  • [14] Recycle of ground granulated blast furnace slag and fly ash on eco-friendly brick production
    Surul, Okan
    Bilir, Turhan
    Gholampour, Aliakbar
    Sutcu, Mucahit
    Ozbakkaloglu, Togay
    Gencel, Osman
    EUROPEAN JOURNAL OF ENVIRONMENTAL AND CIVIL ENGINEERING, 2022, 26 (05) : 1 - 19
  • [15] Performance Investigation of the Incorporation of Ground Granulated Blast Furnace Slag with Fly Ash in Autoclaved Aerated Concrete
    Bernard, Vijay Antony Raj
    Renuka, Senthil Muthalvan
    Avudaiappan, Siva
    Umarani, Chockkalingam
    Amran, Mugahed
    Guindos, Pablo
    Fediuk, Roman
    Vatin, Nikolai Ivanovich
    CRYSTALS, 2022, 12 (08)
  • [16] Durability of carbonated MgO concrete containing fly ash and ground granulated blast-furnace slag
    Pu, L.
    Unluer, C.
    CONSTRUCTION AND BUILDING MATERIALS, 2018, 192 : 403 - 415
  • [17] Environmental impact of concrete containing high volume fly ash and ground granulated blast furnace slag
    Singh, G. V. P. Bhagath
    Prasad, V. Durga
    JOURNAL OF CLEANER PRODUCTION, 2024, 448
  • [18] Enhancement of the properties of fly ash based geopolymer paste by incorporating ground granulated blast furnace slag
    Saha, Suman
    Rajasekaran, C.
    CONSTRUCTION AND BUILDING MATERIALS, 2017, 146 : 615 - 620
  • [19] Characterisation of magnesium potassium phosphate cements blended with fly ash and ground granulated blast furnace slag
    Gardner, Laura J.
    Bernal, Susan A.
    Walling, Samuel A.
    Corkhill, Claire L.
    Provis, John L.
    Hyatt, Neil C.
    CEMENT AND CONCRETE RESEARCH, 2015, 74 : 78 - 87
  • [20] A study on the mechanical properties of alkali activated ground granulated blast furnace slag and fly ash concrete
    Manojsuburam, R.
    Sakthivel, E.
    Jayanthimani, E.
    MATERIALS TODAY-PROCEEDINGS, 2022, 62 (1761-1764) : 1761 - 1764