Gradient-Based Methods for Sparse Recovery

被引:37
|
作者
Hager, William W. [1 ]
Phan, Dzung T. [2 ]
Zhang, Hongchao [3 ]
机构
[1] Univ Florida, Dept Math, Gainesville, FL 32611 USA
[2] IBM Corp, Thomas J Watson Res Ctr, Dept Business Analyt & Math Sci, Yorktown Hts, NY 10598 USA
[3] Louisiana State Univ, Dept Math, Ctr Computat & Technol, Baton Rouge, LA 70803 USA
来源
SIAM JOURNAL ON IMAGING SCIENCES | 2011年 / 4卷 / 01期
基金
美国国家科学基金会;
关键词
sparse reconstruction by separable approximation; iterative shrinkage thresholding algorithm; sparse recovery; sublinear convergence; linear convergence; image reconstruction; denoising; compressed sensing; nonsmooth optimization; nonmonotone convergence; BB method; THRESHOLDING ALGORITHM;
D O I
10.1137/090775063
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The convergence rate is analyzed for the sparse reconstruction by separable approximation (SpaRSA) algorithm for minimizing a sum f(x) + psi(x), where f is smooth and psi is convex, but possibly nonsmooth. It is shown that if f is convex, then the error in the objective function at iteration k is bounded by a/k for some a independent of k. Moreover, if the objective function is strongly convex, then the convergence is R-linear. An improved version of the algorithm based on a cyclic version of the BB iteration and an adaptive line search is given. The performance of the algorithm is investigated using applications in the areas of signal processing and image reconstruction.
引用
收藏
页码:146 / 165
页数:20
相关论文
共 50 条
  • [1] Gradient-Based Image Recovery Methods From Incomplete Fourier Measurements
    Patel, Vishal M.
    Maleh, Ray
    Gilbert, Anna C.
    Chellappa, Rama
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (01) : 94 - 105
  • [2] GRADIENT-BASED SPARSE APPROXIMATION FOR COMPUTED TOMOGRAPHY
    Sakhaee, Elham
    Arreola, Manuel
    Entezari, Alireza
    2015 IEEE 12TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2015, : 1608 - 1611
  • [3] Sparse Gradient-Based Direct Policy Search
    Sokolovska, Nataliya
    NEURAL INFORMATION PROCESSING, ICONIP 2012, PT IV, 2012, 7666 : 212 - 221
  • [4] AN ERROR ANALYSIS OF GRADIENT-BASED METHODS
    LEE, JH
    KIM, SD
    SIGNAL PROCESSING, 1994, 35 (02) : 157 - 162
  • [5] Transforming gradient-based techniques into interpretable methods
    Rodrigues, Caroline Mazini
    Boutry, Nicolas
    Najman, Laurent
    PATTERN RECOGNITION LETTERS, 2024, 184 : 66 - 73
  • [6] On Spectral Properties of Gradient-Based Explanation Methods
    Mehrpanah, Amir
    Englesson, Erik
    Azizpoure, Hossein
    COMPUTER VISION - ECCV 2024, PT LXXXVII, 2025, 15145 : 282 - 299
  • [7] Fundamental Splines on Sparse Grids and Their Application to Gradient-Based Optimization
    Valentin, Julian
    Pflueger, Dirk
    SPARSE GRIDS AND APPLICATIONS - MIAMI 2016, 2018, 123 : 229 - 251
  • [8] Gradient-based SOM Clustering and Visualisation Methods
    Costa, Jose Alfredo F.
    Yin, Hujun
    2010 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS IJCNN 2010, 2010,
  • [9] Robust face recognition via gradient-based sparse representation
    Ma, Peng
    Yang, Dan
    Ge, Yongxin
    Zhang, Xiaohong
    Qu, Ying
    Huang, Sheng
    Lu, Jiwen
    JOURNAL OF ELECTRONIC IMAGING, 2013, 22 (01)
  • [10] Sparse Channel Estimation with Gradient-Based Algorithms: A comparative Study
    Abd El-Moaty, Ahmed M.
    Zerguine, Azzedine
    2018 15TH INTERNATIONAL MULTI-CONFERENCE ON SYSTEMS, SIGNALS AND DEVICES (SSD), 2018, : 60 - 64