GLOBAL UNIQUENESS FOR AN INVERSE PROBLEM FOR THE MAGNETIC SCHRODINGER OPERATOR

被引:5
作者
Lai, Ru-Yu [1 ]
机构
[1] Univ Washington, Dept Math, Seattle, WA 98105 USA
关键词
Dirichlet-to-Neumann map; magnetic fiel; electrical potential; Cauchy data; the Pauli Hamiltonian; BOUNDARY-VALUE PROBLEM; CONDUCTIVITY PROBLEM; EQUATION; THEOREM;
D O I
10.3934/ipi.2011.5.59
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the global uniqueness of determining both the magnetic field and the electrical potential by boundary measurements in two-dimensional case. In other words, we prove the uniqueness of this inverse problem without any smallness assumption.
引用
收藏
页码:59 / 73
页数:15
相关论文
共 50 条
[41]   Inverse scattering for the higher order Schrodinger operator with a first order perturbation [J].
Huang, Hua ;
Duan, Zhiwen ;
Zheng, Quan .
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2019, 27 (03) :409-427
[42]   LINEARIZED INVERSE SCHRODINGER POTENTIAL PROBLEM AT A LARGE WAVENUMBER [J].
Isakov, Victor ;
Lu, Shuai ;
Xu, Boxi .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2020, 80 (01) :338-358
[43]   Inverse scattering problems of the biharmonic Schrodinger operator with a first order perturbation [J].
Xu, Xiang ;
Zhao, Yue .
JOURNAL OF MATHEMATICAL PHYSICS, 2024, 65 (06)
[44]   AN INVERSE BOUNDARY PROBLEM FOR FOURTH-ORDER SCHRODINGER EQUATIONS WITH PARTIAL DATA [J].
Duan, Zhiwen ;
Han, Shuxia .
MATHEMATICA SLOVACA, 2019, 69 (01) :125-138
[45]   Stability estimates for an inverse problem for the Schrodinger equation at negative energy in two dimensions [J].
Santacesaria, Matteo .
APPLICABLE ANALYSIS, 2013, 92 (08) :1666-1681
[46]   UNIQUE CONTINUATION FOR THE MAGNETIC SCHRODINGER OPERATOR WITH SINGULAR POTENTIALS [J].
Arrizabalaga, Naiara ;
Zubeldia, Miren .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (08) :3487-3503
[47]   STABILITY FOR A MAGNETIC SCHRODINGER OPERATOR ON A RIEMANN SURFACE WITH BOUNDARY [J].
Andersson, Joel ;
Tzou, Leo .
INVERSE PROBLEMS AND IMAGING, 2018, 12 (01) :1-28
[48]   Inverse Scattering for Schrodinger Operators on Perturbed Lattices [J].
Ando, Kazunori ;
Isozaki, Hiroshi ;
Morioka, Hisashi .
ANNALES HENRI POINCARE, 2018, 19 (11) :3397-3455
[49]   GLOBAL UNIQUENESS FOR THE CALDERON PROBLEM WITH LIPSCHITZ CONDUCTIVITIES [J].
Caro, Pedro ;
Rogers, Keith M. .
FORUM OF MATHEMATICS PI, 2016, 4 :1-28
[50]   Global uniqueness and reconstruction for the multi-channel Gel'fand-Calderon inverse problem in two dimensions [J].
Novikov, Roman G. ;
Santacesaria, Matteo .
BULLETIN DES SCIENCES MATHEMATIQUES, 2011, 135 (05) :421-434