GLOBAL UNIQUENESS FOR AN INVERSE PROBLEM FOR THE MAGNETIC SCHRODINGER OPERATOR

被引:5
作者
Lai, Ru-Yu [1 ]
机构
[1] Univ Washington, Dept Math, Seattle, WA 98105 USA
关键词
Dirichlet-to-Neumann map; magnetic fiel; electrical potential; Cauchy data; the Pauli Hamiltonian; BOUNDARY-VALUE PROBLEM; CONDUCTIVITY PROBLEM; EQUATION; THEOREM;
D O I
10.3934/ipi.2011.5.59
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the global uniqueness of determining both the magnetic field and the electrical potential by boundary measurements in two-dimensional case. In other words, we prove the uniqueness of this inverse problem without any smallness assumption.
引用
收藏
页码:59 / 73
页数:15
相关论文
共 50 条
[21]   The Buckling Operator: Inverse Boundary Value Problem [J].
Ma, Yanjun .
MATHEMATICS, 2023, 11 (02)
[22]   Stability of the inverse scattering problem for the self-adjoint matrix Schrodinger operator on the half line [J].
Xu, Xiao-Chuan ;
Bondarenko, Natalia Pavlovna .
STUDIES IN APPLIED MATHEMATICS, 2022, 149 (03) :815-838
[23]   Uniqueness in an inverse problem of fractional elasticity [J].
Covi, Giovanni ;
de Hoop, Maarten ;
Salo, Mikko .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2023, 479 (2278)
[24]   STABILITY ESTIMATES FOR A MAGNETIC SCHRODINGER OPERATOR WITH PARTIAL DATA [J].
Potenciano-Machado, Leyter ;
Ruiz, Alberto .
INVERSE PROBLEMS AND IMAGING, 2018, 12 (06) :1309-1342
[25]   Stability estimates for the magnetic Schrodinger operator with partial measurements [J].
Potenciano-Machado, Leyter ;
Ruiz, Alberto ;
Tzou, Leo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 321 :475-521
[26]   A global in time existence and uniqueness result for an integrodifferential hyperbolic inverse problem with memory effect [J].
Wu, Bin ;
Liu, Jijun .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 373 (02) :585-604
[27]   Born approximation for the magnetic Schrodinger operator [J].
Serov, Valery ;
Harju, Markus .
INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2019, 27 (04) :422-438
[28]   INVERSE BOUNDARY VALUE PROBLEM FOR SCHRODINGER EQUATION IN TWO DIMENSIONS [J].
Imanuvilov, O. Yu. ;
Yamamoto, M. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2012, 44 (03) :1333-1339
[29]   Uniqueness for an inverse problem in electromagnetism with partial data [J].
Brown, B. M. ;
Marletta, M. ;
Reyes, J. M. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (08) :6525-6547
[30]   Uniqueness of the Solution to the Inverse Problem of Scattering Theory for the Sturm--Liouville Operator with a Spectral Parameter in the Boundary Condition [J].
Kh. R. Mamedov .
Mathematical Notes, 2003, 74 :136-140