Kernel Extended Local Tangent Space Alignment for SAR Image Classification

被引:0
作者
Yu, Xuelian [1 ]
机构
[1] Univ Elect Sci & Technol China, Chengdu, Sichuan, Peoples R China
来源
2018 15TH EUROPEAN RADAR CONFERENCE (EURAD) | 2018年
关键词
ATR; SAR; local tangent space alignment; MSTAR;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This study proposes a novel local tangent space alignment (LTSA) variant, kernel extended (KE)-LTSA for synthetic aperture radar (SAR) image classification. It attempts on one hand to extract local geometric structures embedded in local neighbourhoods and on the other hand to maximize global interclass separability characterized by the overall distances among different classes. Moreover, it is formulated with kernel technique to obtain better performance than linear counterparts. Experimental results on the MSTAR database demonstrate that the proposed method can significantly improve the classification performance. Results also indicate the robustness when taking into account target variability and neighbourhood size.
引用
收藏
页码:222 / 225
页数:4
相关论文
共 6 条
  • [1] Target recognition in synthetic aperture radar images via non-negative matrix factorisation
    Cui, Zongyong
    Cao, Zongjie
    Yang, Jianyu
    Feng, Jilan
    Ren, Hongliang
    [J]. IET RADAR SONAR AND NAVIGATION, 2015, 9 (09) : 1376 - 1385
  • [2] Aspect invariant features for radar target recognition
    Doo, Seung Ho
    Smith, Graeme E.
    Baker, Chris J.
    [J]. IET RADAR SONAR AND NAVIGATION, 2017, 11 (04) : 597 - 604
  • [3] Li HY, 2005, LECT NOTES COMPUT SC, V3496, P546
  • [4] Ma L, 2010, ELECT LETT, V46
  • [5] Linear local tangent space alignment and application to face recognition
    Zhang, Tianhao
    Yang, Jie
    Zhao, Deli
    Ge, Xinliang
    [J]. NEUROCOMPUTING, 2007, 70 (7-9) : 1547 - 1553
  • [6] Principal manifolds and nonlinear dimensionality reduction via tangent space alignment
    Zhang, ZY
    Zha, HY
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2004, 26 (01) : 313 - 338