Finite-size scaling of the Glauber model of critical dynamics

被引:39
|
作者
Luscombe, JH
Luban, M
Reynolds, JP
机构
[1] IOWA STATE UNIV SCI & TECHNOL,AMES LAB,AMES,IA 50011
[2] IOWA STATE UNIV SCI & TECHNOL,DEPT PHYS & ASTRON,AMES,IA 50011
来源
PHYSICAL REVIEW E | 1996年 / 53卷 / 06期
关键词
D O I
10.1103/PhysRevE.53.5852
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We obtain the exact critical relaxation time tau(L)(xi), where xi is the bulk correlation length, for the Glauber kinetic Ising model of spins on a one-dimensional lattice of finite length L for both periodic and free boundary conditions (BC's). We show that, independent of the BC's, the dynamic critical exponent has the well-known value z=2, and we comment on a recent claim that z=1 for this model. The ratio tau(L)(xi)/tau(infinity)(xi), in the double limit L,xi-->infinity for fixed x=L/xi, approaches a limiting functional form, f(tau)(L/xi), the finite-size scaling function. For free BC's we derive the exact scaling function f(tau)(x) = [1+(omega(x)/(x)(2)](-1), where omega(x) is the smallest root of the transcendental equation omega tan(omega/2)=x. We provide expansions of omega(x) in powers of x and x(-1) for the regimes of small and large x, respectively, and establish their radii of convergence. The scaling function shows anomalous behavior at small x, f(tau)(x)approximate to x, instead of the usual f(tau)(x)approximate to x(z), as x-->O. This is because, even for finite L, the lifetime of the slowest dynamical mode diverges for T-->0 K. For periodic BC's, with the exception of one system, sigma(L) is independent of L, and hence f(tau)=1. The exceptional system, that with an odd number of spins and antiferromagnetic couplings, exhibits frustration at T=O K, and the scaling function is given by f(tau)(x)=[1+(pi/x)(2)](-1).
引用
收藏
页码:5852 / 5860
页数:9
相关论文
共 50 条
  • [41] The Finite-Size Scaling Study of the Ising Model for the Fractals
    Z. Merdan
    M. Bayirli
    A. Günen
    M. Bülbül
    International Journal of Theoretical Physics, 2016, 55 : 2031 - 2039
  • [43] Critical finite-size scaling of magnetization distribution function for Baxter-Wu model
    Martinos, SS
    Malakis, A
    Hadjiagapiou, I
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 331 (1-2) : 182 - 188
  • [44] FINITE-SIZE SCALING STUDY OF THE LAPLACIAN ROUGHENING MODEL
    JANKE, W
    KLEINERT, H
    PHYSICS LETTERS A, 1989, 140 (09) : 513 - 514
  • [45] The Finite-Size Scaling Study of the Ising Model for the Fractals
    Merdan, Z.
    Bayirli, M.
    Gunen, A.
    Bulbul, M.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2016, 55 (04) : 2031 - 2039
  • [46] A finite-size scaling study of a model of globular proteins
    Pagan, DL
    Gracheva, ME
    Gunton, JD
    BIOPHYSICAL JOURNAL, 2004, 86 (01) : 507A - 507A
  • [47] FINITE-SIZE SCALING AMPLITUDES IN A RANDOM TILING MODEL
    LI, WX
    PARK, H
    WIDOM, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (11): : L573 - L580
  • [48] Finite-size scaling behavior in the O(4) model
    Braun, Jens
    Klein, Bertram
    EUROPEAN PHYSICAL JOURNAL C, 2009, 63 (03): : 443 - 460
  • [49] Finite-size scaling behavior in the O(4) model
    Jens Braun
    Bertram Klein
    The European Physical Journal C, 2009, 63 : 443 - 460
  • [50] Critical Dynamics of Transverse-field Quantum Ising Model using Finite-Size Scaling and Matrix Product States
    Pang, S. Y.
    Muniandy, S. V.
    Kamali, M. Z. M.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2019, 58 (12) : 4139 - 4151