Finite-size scaling of the Glauber model of critical dynamics

被引:39
|
作者
Luscombe, JH
Luban, M
Reynolds, JP
机构
[1] IOWA STATE UNIV SCI & TECHNOL,AMES LAB,AMES,IA 50011
[2] IOWA STATE UNIV SCI & TECHNOL,DEPT PHYS & ASTRON,AMES,IA 50011
来源
PHYSICAL REVIEW E | 1996年 / 53卷 / 06期
关键词
D O I
10.1103/PhysRevE.53.5852
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We obtain the exact critical relaxation time tau(L)(xi), where xi is the bulk correlation length, for the Glauber kinetic Ising model of spins on a one-dimensional lattice of finite length L for both periodic and free boundary conditions (BC's). We show that, independent of the BC's, the dynamic critical exponent has the well-known value z=2, and we comment on a recent claim that z=1 for this model. The ratio tau(L)(xi)/tau(infinity)(xi), in the double limit L,xi-->infinity for fixed x=L/xi, approaches a limiting functional form, f(tau)(L/xi), the finite-size scaling function. For free BC's we derive the exact scaling function f(tau)(x) = [1+(omega(x)/(x)(2)](-1), where omega(x) is the smallest root of the transcendental equation omega tan(omega/2)=x. We provide expansions of omega(x) in powers of x and x(-1) for the regimes of small and large x, respectively, and establish their radii of convergence. The scaling function shows anomalous behavior at small x, f(tau)(x)approximate to x, instead of the usual f(tau)(x)approximate to x(z), as x-->O. This is because, even for finite L, the lifetime of the slowest dynamical mode diverges for T-->0 K. For periodic BC's, with the exception of one system, sigma(L) is independent of L, and hence f(tau)=1. The exceptional system, that with an odd number of spins and antiferromagnetic couplings, exhibits frustration at T=O K, and the scaling function is given by f(tau)(x)=[1+(pi/x)(2)](-1).
引用
收藏
页码:5852 / 5860
页数:9
相关论文
共 50 条
  • [31] Finite-size scaling and universality above the upper critical dimensionality
    Luijten, E
    Blote, HWJ
    PHYSICAL REVIEW LETTERS, 1996, 76 (10) : 1557 - 1561
  • [32] Electronic structure critical parameters from finite-size scaling
    Neirotti, JP
    Serra, P
    Kais, S
    PHYSICAL REVIEW LETTERS, 1997, 79 (17) : 3142 - 3145
  • [33] ON THE QUANTUM FINITE-SIZE SCALING
    KORUTCHEVA, ER
    TONCHEV, NS
    PHYSICA A, 1993, 195 (1-2): : 215 - 222
  • [34] Transport phenomena in fluids: Finite-size scaling for critical behavior
    Roy, Sutapa
    Das, Subir K.
    EPL, 2011, 94 (03)
  • [35] THE RELATION BETWEEN AMPLITUDES AND CRITICAL EXPONENTS IN FINITE-SIZE SCALING
    NIGHTINGALE, P
    BLOTE, H
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (17): : L657 - L664
  • [36] Locating the QCD critical endpoint through finite-size scaling
    Antoniou, N. G.
    Diakonos, F. K.
    Maintas, X. N.
    Tsagkarakis, C. E.
    PHYSICAL REVIEW D, 2018, 97 (03)
  • [37] Microcanonical Finite-Size Scaling
    Michael Kastner
    Michael Promberger
    Alfred Hüller
    Journal of Statistical Physics, 2000, 99 : 1251 - 1264
  • [38] Microcanonical finite-size scaling
    Kastner, M
    Promberger, M
    Hüller, A
    JOURNAL OF STATISTICAL PHYSICS, 2000, 99 (5-6) : 1251 - 1264
  • [39] Finite-size scaling properties of the damage distance and dynamical critical exponent for the Ising model
    Wang, F.
    Suzuki, M.
    Physica A: Statistical and Theoretical Physics, 1995, 220 (3-4):
  • [40] Finite-size scaling of the magnetization probability density for the critical Ising model in slab geometry
    Cardozo, David Lopes
    Holdsworth, Peter C. W.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2016, 28 (16)